
Lecture 18 - Chosen Ciphertext Security

Boaz Barak

November 21, 2005

Public key encryption We now go back to public key encryption. As we
saw in the case of private key encryption, CPA security is not sufficient
for many applications of encryption. For example, consider the login
problem:

• Client and server share secret PIN .

• Client and server share secret crypto key.

• To login, client sends encryption of PIN to server.

We saw that even if the encryption is CPA secure, an adversary that
controls the communication channel might be able to find out the PIN.
However, we were able to solve this problem using a MAC.

Public key login One problem with this protocol is that the client and the
server need to share a cryptographic key. This is often not realistic (we
can trust a user to memorize a PIN, but nothing more than that). A
much more realistic setting is that the client only knows a public key of
the server. This means that we have the following protocol:

• Client and server share secret PIN .

• Client and server has public encryption key e of server.

• To login, client sends encryption of PIN with key e to server.

However, this protocol is not going to work if the encryption scheme
is only CPA secure. (See exercise) Even worse, we can’t fix this with
signatures in the way we fixed the previous protocol with MACs, since
don’t want to assume that the client has a private signature key with
the server knowing the corresponding public key.

This means that we need a stronger notion of encryption. Indeed, for
this and many other applications, we need encryption schemes that are
chosen ciphertext secure (CCA).

1



Chosen Ciphertext Security (CCA) (This is a straightforward conver-
sion of the private-key definition of lecture 9 to the public key setting)

Definition 1 (CCA security ). An encryption (Gen, E, D) is said to be
(T, ε)-CCA secure if it’s valid (for every (e, d) = Gen(1n), Dd(Ee(x)) = x)
and for every T -time A if we consider the following game:

• (e, d)←R G(1n).

• A gets as input e.

• A gets access to black boxes for Ee(·) (redundant) and Dd(·).
• A chooses x1, x2.

• Sender chooses i←R {1, 2} and gives A y = Ee(xi).

• A gets more access to black boxes for Ee(·) (redundant) and Dd(·)
but is restricted not to ask y to the decryption box. More formally,
A gets access to the following function D′d(·) instead of Dd(·)

D′d(y
′) =

{
Dd(y

′) y′ 6= y

⊥ y′ = y

(⊥ is a symbol that signifies “failure” or “invalid input”)

• A outputs j ∈ {1, 2}.

A is successful if j = i, the scheme is (T, ε) CCA-secure if the probability
that A is successful is at most 1

2 + ε.

It’s not hard to show that the hardcore based CPA-secure public key
encryption scheme we saw in class is not CCA secure. In the homework
exercises you will show that CCA security suffices to solve the login
problem. CCA security is now considered the preferred notion of security
for encryption schemes, and the one that corresponds best to ”digital
envelopes”.

Plan Unfortunately, we’ll probably not get to see in this course a construc-
tion of an encryption scheme with a proof that it is CCA secure under
some standard computational assumption. Rather, we’ll show an en-
cryption scheme with a proof that it is CCA secure in the random oracle
model.

A CPA secure scheme in the random oracle model . For starters, we’ll
show a CPA secure scheme in the random oracle model. One advantage
of this scheme over the hardcore-bit based scheme we saw before will

2



be that it will have shorter ciphertexts. (To encrypt n bits we’ll need
3n bits as opposed to n2 in the previous bit-by-bit scheme.) The main
advantage of concern to us will be that we’ll be able to generalize it to a
CCA secure encryption scheme.

A CPA Secure Scheme:

• Let G : {0, 1}n → {0, 1}n be a random oracle and {(f, f−1)} be
collection of trapdoor permutations. The public key of the scheme
will be f(·) while the private key be f−1.

• To encrypt x ∈ {0, 1}n, choose r ←R {0, 1}n and compute f(r), G(r)⊕
x.

• To decrypt y, z compute r = f−1(y) and let x = r ⊕ z.

Theorem 1. The above scheme is CPA secure in the random oracle
model.

Proof. For public key encryption, the encryption oracle is redundant and
so CPA security means that an adversary A that gets as input the en-
cryption key (f(·) in our case) cannot tell apart E(x1) and E(x2) for every
x1, x2.

However, in the random oracle model we need to give A also access to
the random oracle G(·).
We denote the ciphertext A gets as challenge by y∗, z∗ where y∗ = f(r∗)
and z∗ = G(r∗)⊕ x∗. We start by proving the following:

Claim 1.1. The probability that A queries r∗ of its oracle G(·) is negli-
gible.

Proof. Consider the following experiment: instead of giving z∗ = G(r∗)⊕
x∗, we give A the string z∗ = u⊕ x∗ where u is a uniform element. The
only way A could tell apart the two cases is if he queries r∗ to G and sees
that the answer is different from u, but then we already “lost”. Thus,
the probability that A queries r∗ in this experiment is the same as the
probability that it queries r∗ in the actual attack.

However, in this experiment the only information A gets about r∗ is
f(r∗) - thus if it queries G(·) the value r∗ then it inverted the trapdoor
permutation!

Now this means we can ignore the probability that A queried r∗ and
hence we can (like in the proof of the claim) assume that z∗ = u ⊕ x∗

where u is chosen independently at random. However, this means that

3



A gets no information about x∗ and hence will not be able to guess if
it’s equal to x1 or x2 with probability greater than 1/2.

The CCA secure encryption First note that if we have one random oracle
we can have many independent oracles (just have Gi(x) = G(i◦x)). We’ll
use two independent random oracles G, H in the next scheme.

• Let G, H : {0, 1}n → {0, 1}n be two independent random oracles and
{(f, f−1)} be collection of trapdoor permutations. The public key of
the scheme will be f(·) while the private key be f−1.

• To encrypt x ∈ {0, 1}n, choose r ←R {0, 1}n and compute f(r), G(r)⊕
x, H(x, r).

• To decrypt y, z, w compute r = f−1(y) and let x = r ⊕ z. Then,
check that w = H(x, r): if so then return x, otherwise return ⊥.

Theorem 2. The above scheme is CCA secure.

Proof. Let A be an algorithm in a CCA attack against the scheme. Again,
denote by y∗, z∗, w∗ the challenge ciphertext A gets where y∗ = f(r∗),
z∗ = G(r∗)⊕ x∗ and w∗ = H(x∗, r∗).

Since H is a random oracle, we can assume that throughout the attack,
no one (the sender, receiver or A) will ever find a two pairs x, r and x′, r′

such that x ◦ r 6= x′ ◦ r′ but H(x, r) = H(x′, r′).

Thus, at each step i of the attack and for every string w ∈ {0, 1}n we
can define H−1

i (w) in the following way: if the oracle H was queried
before with some x, r and returned w then H−1

i (w) = (x, r). Otherwise,
H−1

i (w) = ⊥.

We also observe that a pair x, r completely determines a ciphertext y, z, w
that is a function of x and r and also that y, z completely determine x
and r.

We consider the following experiment: at step i, we answer a decryption
query y, z, w of A in the following way: if H−1

i (w) is equal to some x, r
that determine y, z, w then return x. Otherwise, return ⊥.

Note that the difference between this oracle and the real decryption or-
acle is that we may answer ⊥ when the real decryption oracle would
give an actual answer. However, we claim that A will not be able to tell
apart with non-negligible probability the difference between this decryp-
tion oracle and the real one. Indeed, the only difference would be if A
managed to ask the oracle a query: y, z, w satisfying the following:

4



• w 6= w∗ (since if w = w∗ then we have that H−1
i (w) = x∗, r∗ and

hence A either asked a query that both oracles answer with ⊥ or it
asked the disallowed query y∗, z∗, w∗).

• w was not returned as the answer of any previous query x, r to H(·)
by A.

• If we let x, r be the values determined by y, z then H(x, r) = w.
However, since (x, r) was not asked before, the probability that this
happens is only 2−n.

Thus, we see that we can simulate the decryption box of A without
knowing f−1, x∗ and r∗. This means that A basically has no use for the
decryption box and hence it would be sufficient to prove that the scheme
is just CPA secure. This proof follows in a similar way to the previous
scheme.

Some practical issues One drawback of this scheme is that it uses a ci-
phertext of length 3n where n is the length of input for the trapdoor
permutation. Scheme that use n-bit long ciphertext are known in the
literature (see web page for links to papers).

5


