
Lecture 16 - Digital Signatures

Boaz Barak

November 15, 2005

Definition of digital signatures. Recall that we had the following picture:

Private Key Public Key
Secrecy Private Key Encryption Public key Encryption
Integrity Message Authentication Codes (MAC) ??

Digital signatures complete this picture by giving a public key analog
of message authentication codes. Digital signatures were suggested by
Diffie and Hellman in their seminal paper, but unlike the case of public
key encryption schemes (where they had a key exchange protocol that
could be made into a probabilistic encryption scheme) they did not have
a reasonable candidate for such signatures until the RSA system was
invented a year later by Rivest, Shamir and Adelman. However, even
the RSA system was quickly seen not to have sufficient security and only
later Goldwasser, Micali and Rivest gave what is now considered to be
the “right” definition for digital signatures, and also a factoring-based
construction meeting this definition. This definition is called existen-
tial forgery under chosen-message attack but we’ll simply call it secure
signature schemes.

Definition 1 (Digital Signatures). A triplet of algorithms Gen, Sign, Ver
is called a (T, ε)-secure signature scheme if it satisfies the following prop-
erties:

Validity For every pair (s, v) ← Gen(1n), and every m ∈ {0, 1}n, we
have that

Verv(m, Signs(m)) = 1

Security For every T -time circuit A, we have that

Pr[ASignv(·)(v) = (m,σ) st m wasn’t queried by A and Verv(m, σ) = 1] < ε

Again, a scheme is simply secure if it is (T, ε)-secure for super-polynomial
T and ε.

1



Applications. Digital signatures have many applications and are widely
used today in the world. Some practical application include verifying
websites such as amazon.com and verifying code such as drivers for
Windows and upgrades for embedded devices. In fact, signature keys
tend to be much “longer-lived” than encryption keys: they are often
hardwired into various devices and there’s no mechanism to replace them.
Thus, there are fixed and well known public verification keys today whose
corresponding secret keys are worth many millions of dollars. For this
reason protecting the private signature keys is often more critical than
protecting the private decryption keys, and time permitting, we may
discuss some techniques for such protection in this class.

History For some time, people thought that it will be impossible to achieve
signature schemes with a proof of security. The reasoning was that the
proof of security will have to be an efficient way to transform a forged
signature into, say, a factoring of n, where n = pq is the public key.
However, if there is such a way then the scheme cannot be secure un-
der a chosen message attack. However, this reasoning is flawed and in
1984 this was demonstrated by Goldwasser, Micali and Rackoff who gave
the first (albeit stateful) signature scheme based on the hardness of fac-
toring. This was later improved by Goldreich to a stateless signature
scheme. Surprisingly, results of Naor and Yung, and Rompel show that
secure signature schemes can be constructed based on much weaker as-
sumptions without using any number theory: either Axiom 1 (existence
of pseudorandom generators) or Axiom 2 (existence of one-way permu-
tations) suffice.

All these signature schemes are still not quite efficient enough for practi-
cal use. More efficient constructions were given by Gennaro, Halevi and
Rabin , and by Cramer and Shoup, under some stronger variant of the
RSA assumptions.

Plan We won’t have time to present most of these. Rather our plan will be
as follows:

1. We’ll show a one-time signature scheme, that is only guaranteed to
be secure if the adversary gets to ask a single query.

2. We’ll use that to construct a stateful signature scheme, where the
signer needs to maintain state between each signature.

3. Then we’ll briefly explain how can we convert this signature scheme
to a standard, stateless signature scheme.

2



In addition, we’ll give two schemes that are closely related to ones used
in practice:

1. We’ll show a different construction for an interactive signature scheme
where we do not need to maintain state but relax the assumption that
the signature consists of a single message from signer to receiver.

2. Finally, we’ll also present an efficient construction of a stateless,
non-interactive signature scheme. However, we’ll not be able to
prove security for this construction under any reasonable assump-
tion. Rather, we’ll only give a heuristic argument why this scheme
may be secure.

The last scheme is probably the one most common in practice. An-
other common practical signature scheme is a non-interactive version of
the interactive signature scheme that also has a heuristic argument of
security.

To try to cover all this material in two lectures, the presentation will
sometimes be sketchy. Complete proofs for the first three steps are avail-
able in Goldreich’s book. A proof for the last scheme is available in the
paper by Bellare and Rogaway on the random oracle methodology.

One time signature scheme We start by presenting a one-time signature
scheme (due to Lamport) that remains secure if the attacker can only
make a single query to the signing oracle. In fact, we’ll consider an even
simpler variant: a signature for a single bit. Thus, the attack is that the
adversary chooses a bit b ∈ {0, 1}, gets a signature for b and needs to
forge a signature for b = 1− b. We’ll base this on Axiom 2: the existence
of a one-way permutation f(·) that is a one-to-one function f : {0, 1}n →
{0, 1}n such that for every polynomial-time A, Prx←R{0,1}n[A(f(x)) =

x] < n−ω(1).

Key generation Gen(1n) chooses x0, x1 ←R {0, 1}n and computes yb =
f(xb) for b = 0, 1. The private signing key is s = (x0, x1) and the
public verification key is v = (y0, y1).

Signing algorithm To a sign a bit b ∈ {0, 1}, Signs(b) = xb.

Verification Verv(b, x) = 1 iff f(x) = yb.

It is a simple exercise to verify that this scheme is secure under a single-
query chosen message attack.

3



Extending to longer messages It is clear how to extend a single bit scheme
into a scheme for signing ` bits: just generate ` independent public/private
key pairs.

Signing messages longer than the key length. One drawback of that scheme
(other than it is one-time) is that to sign a message of length `, we need a
key of length n ·`. This turns out to be a serious bottleneck in converting
a one-time signature scheme into a standard (many-times) scheme. To
overcome this, we’ll need the notion of a collision resistant hash function.
The idea is that this is a collection of functions H such that each function
maps say 2n bit long strings into n bit long strings and so it’s definitely
not one-to-one but given such a function it is infeasible to demonstrate
that it is not one-to-one (i.e., to find a collision: two values x 6= x′ such
that h(x) = h(x′)). The formal definition is the following:

Definition 2 (Collision-resistant hash functions). A collection of func-
tions {hk}k∈{0,1}∗, with hk : {0, 1}2n → {0, 1}n for k ∈ {0, 1}n, is called
(T, ε)-collision resistant if the function (k, x) 7→ hk(x) is polynomial-time
computable and for every T -time A we have that

Pr
k←R{0,1}n

[A(k) = (x, x′) st hk(x) = hk(x
′)] < ε(n)

Collision resistant hash functions are known to exist based on the as-
sumption that factoring is hard (Goldwasser, Micali and Rivest) and
there are also several efficient candidates for collision resistant functions
(e.g., SHA-256). Last year a team of researchers made headline news
showing that the most commonly used hash function (MD-5) is not
collision-resistant (they found collisions) and also gave some evidence
that another widely used hash function (SHA-1) is much less collision
resistant than people originally thought.

Naor and Yung defined a weaker notion of collision resistant that can
be sufficient for the application of signature schemes, and showed that it
can be achieved using Axiom 2 only, Rompel then improved this to use
only Axiom 1. ‘

A scheme with message size > key size : It is not hard to show that
given a collision resistant hash function h mapping {0, 1}2n to {0, 1}n we
can extend it to a function mapping say {0, 1}n3

to {0, 1}n. Therefore
we can have the following scheme:

Components: A signature scheme (Gen′, Sign′, Ver′) that uses n2 long
keys to sign n long messages. A hash function collection {hk}k∈{0,1}∗

4



where for k ∈ {0, 1}n, hk : {0, 1}n3 → {0, 1}n. For convenience we
use h to denote both the function itself and its key k, thus we think
of h as both a function from {0, 1}n3

to {0, 1}n and an n bit string.

Key generation Gen(1n) chooses a pair (s′, v′) of a signature scheme
for messages of length n, and a hash function h : {0, 1}n3 → {0, 1}n.
The public key is (h, v′) while the private key is s′.1 Note that the
length of the keys is n2 + n� n3.

Signing algorithm To a sign a message m ∈ {0, 1}n3

, compute m′ =
h(m) and output σ = Sign′s′(m

′).

Verification Verv(m, σ) = 1 iff Verv′(h(m), σ) = 1.

This transformation applies equally well to one time and many time
schemes. In both cases the new scheme inherits the security of the old
scheme. The idea of the proof is that as long as the adversary doesn’t
find a collision in the hash function, we can convert an attack on the new
scheme to an attack on the underlying scheme.

From one-time to many-times scheme. Our next step is to have a scheme
that will be secure for more than one signature. However, our scheme
will have the drawback that it will preserve state, and also that the sig-
nature size will grow with time: the tth signature made will be of size
about t · n.

The idea is simple: first we observe that we can easily convert a one-time
signature for messages of length ` to a two-time signature for messages
of length `/2 and so we can assume that we have a two-time signature
scheme with n-bit public key length for, say, 10n (although n will suffice)
long messages.

We’ll let the public and private keys of our schemes be the keys of the
two-time scheme, and denote them by (s0, v0). At time i, to sign a
message m, we first generate a pair of new keys si, vi, and then use si−1

to sign the pair vi and obtain a signature σi and in addition sign m using
vi to obtain a signature σ. The signature is the list σ1, . . . , σi and σ. To
verify it using the key v0 the verifier checks for all j > 0 that σj is a
signature of vj that passes verification w.r.t. vj−1 and that in addition
σi also contains a signature for m.

The idea of signing one verification key using another is called a certificate
and is widely used in cryptography.

1When specifying a private key we always ignore the parts that are already present in the corresponding public
key.

5



Getting shorter signatures. The fact that the signature size grows lin-
early with time is a very serious drawback of the previous scheme. We’ll
now present a scheme where the tth signature is only of size (log t) · n.
Since we can always assume t ≤ 2n, this means that the signature size is
never bigger than n2.

The idea (due to Merkle) is to use a certificate tree instead of a path as
was used before. That is, we maintain a binary tree where each node is
associated with a verification/signing key pair and each no-leaf node is
also associated with a signature. Initially the tree consists of only one
node that is both root and a leaf and is associated with the “main” pair
s0, v0 and no signature. When we want to sign a message m we find the
“shallowest” (closest to root) leaf, denoted x, and if (s, v) are the keys
associated with x, we generate two new pairs, (s1, v1) and (s2, v2) and
sign v1 ◦ v2 using s. We associate this signature with x and create two
children for it with the corresponding key pairs (s1, v1) and (s2, v2).

The signature on m is the list of signatures on the path from the root to
x along with a signature on m using s. Note that this path is of length
at most log t.

Making this stateless Goldreich suggested a way to make this signature
scheme stateless. The idea is the following: if the signing algorithm
could just recompute the tree (or even just the path) “on demand” every
time it needed a new signature then it would not need to keep the tree
in memory. However, the problem is that it needs to record its random
choices for all the keys generated when computing the tree. Fortunately,
this can be resolved using pseudorandom functions: the private key will
contain a key k for a PRF family {fk} and all the randomness needed
during the creation of a node x in the tree will be obtained by running
fk(x).

This of course requires proof, which we skip here, but can be found in
Section 6.4.2.3 of Goldreich’s book, Vol II.

6


