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Proofs In mathematics and in life, we often want to convince or prove things to others. Typically,
if I know that X is true, and I want to convince you of that, I try to present all the facts I
know and the inferences from that fact that imply that X is true.

Example: I know that 26781 is not a prime since it is 113 times 237, to prove to you that
fact, I will present these factor and demonstrate that indeed 113× 237 = 26781.

Zero Knowledge Proofs A typical byproduct of a proof is that you gained some knowledge,
other than that you are now convinced that the statement is true. In the example before, not
only are you convinced that 26781 is not a prime, but you also learned its factorization.

A zero knowledge proof tries to avoid it. In a zero-knowledge proof Alice will prove to Bob
that a statement X is true, Bob will completely convinced that X is true, but will not learn
anything as a result of this process. That is, Bob will gain zero knowledge.

Zero knowledge proofs were invented by Goldwasser, Micali and Rackoff in 82 (the paper,
which we’ll call GMR, appeared in FOCS 85). Zero-knowledge proofs (and interactive proofs
in general, also introduced in that paper) turned out to be one of the most beautiful and
influential concepts in computer science, with applications ranging from practical signature
schemes to proving that many NP-complete problems are hard even to approximate.

Motivation One motivation is philosophical: the notion of a proof is basic to mathematics and to
people in general. It is a very interesting quesiton whether a proof inherently carries with it
some knowledge or not. Another motivation is practical: zero knowledge proofs have found
many applications. Most practical applications fall into two types:

• Protocol design. A protocol is an algorithm for interactive parties to achieve some goal.
For example, we saw the Diffie-Hellman key exchange protocol. In that protocol, we
assume that both parties follow the instructions of the protocol, and the only thing we
worried about was a passive easvesdropping adversary Eve.
However, in crypto we often want to design protocols that should achieve security even
when one of the parties is “cheating” and not following the instructions. This is a hard
problem since we have no way of knowing the exact way the party will cheat.
One way to avoid cheating is the following: If Alice runs a protocol with Bob, to show
Bob she is not cheating she will send Bob all the inputs she had, and then Bob can verify
for himself that if one runs the prescribed instructions on these inputs, you will indeed
get the outputs (messages) that Alice sent.
However, this way will be often unacceptable to Alice: the only reason they are running
this protocol is that they don’t completely trust each other, and the inputs she had may
be secret, and she does not want to share them.
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Zero-knowledge offer a solution to this conundrum. Instead of sending her inputs, Alice
will prove in zero knowledge that she followed the instructions. Bob will be convinced,
but will not learn anything about her inputs he did not know before.
In fact, we will see that it is possible to do this in a very general way, applying essentially
to all cryptographic protocols. Thus, a general technique (invented by Goldreich, Micali
and Wigderson , GMW) is to design a cryptographic protocol first assuming everyone
will follow the instructions, and then “force” them to follow instruction using a zero
knowledge proof system.

• Identification scheme. A somewhat simpler and more direct application is to identifica-
tion schemes. Suppose that we want to control access to the CS department. One way
to do that is to give authorized people a secret PIN number, and have a box on the door
where type the PIN number on that box. (A more convenient but essentially equivalent
way is that the authorized people have a card that transmits the PIN number to the
box.)
A drawback of this approach is that the box remains outside all the time, and if someone
could examine the box, they would perhaps be able to view its memory and extract the
secret keys of all people. Thus, from a security standpoint, it is much better if the box
contains no secret information at all, and even if someone installed a “fake box” they
would not learn anything about the secret PIN.
Zero-knowledge proofs help us in the following way.

1. Have the box contain an instance of a hard problem. For example, the box can
contain a composite number n without its factorization.

2. Give the authorized people the solution to the instance. For example, they can get
the factorization of n to n = p · q.

3. The authorized people will prove to the Box they know the factorization in zero
knowledge. (Of course, there is a question of how do you prove that you know
something, but this was also shown by GMR (and further developed by others.)

Plan: Zero knowledge is an elusive concept in the sense that not only it’s not clear how to construct
such things, it’s also not clear even how to define such creatures. We will start by explaining
some of the generalizations to the notion of proofs that are needed. Then, we will give an
example for a zero knowledge proof for a particular family of statements (or in more standard
terms, for a particular language). We will then talk about the definition of zero knowledge
proofs. Next lecture we will see that the extremely useful fact, shown by GMW, that any
NP-statement can be proven in zero knowledge.

Interactive probabilistic proofs. The standard mathematical notion of a proof is the following:
you have axioms and inference rules, and the proof for x is a string π that derives x from the
axiom using the inference rules.

A proof system is sound if you can never derive false statements using it. Soundness is a
minimal condition, in the sense that unsound proof systems are not very interesting.

A proof system is complete if you can prove all true statements using it. Similarly, we ay it
is complete for a family L of true statements, if you can prove all statements in L using it.

Thus the traditional notion assumes that the proof π is a static string that was written down
somewhere and anyone can verify. A valid proof gives absolute certainty that the statement
is true.
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GMR generalized this notion to think of a proof as a game between a prover and a verifier.
The game can be interactive, where the verifier asks questions and the prover answers, and
the goal of the game is for the prover to convince the verifier that the statement is true.

They even further generalized it to the notion of a probabilistic proof system. That is, the
verifier does not convinced with absolute certainty that the statement is true but “only” with
99.999% certainty. What is crucial here is that no matter what the prover does and how she
tries to cheat, if the statement is false she will fail with this probability.

One example for a probabilistic interactive proof is proving that Alice can distinguish between
Coke and Pepsi using the following protocol: Alice turns her back, Bob flips a coin and puts
either Coke or Pepsi into a paper cup according the result, Alice tastes and announces whether
she thinks it was Coke or Pepsi. If they repeat this k times and Alice always answers correctly
then Bob can conclude with 1− 2−k probability that she really can tell the difference.

Example We are going to give an example for a zero knowledge interactive probabilistic proof.
The formal definition will be after the example. Similarly to the Coke/Pepsi proof, we will
give a basic proof that has soundness error equal to 1/2, but can be amplified to a proof with
soundness error 2−k by repeating it k times.

Recall that if n is a number, then x ∈ Z∗n is a quadratic residue mod n if there is some s such
that x = s2 (mod n). It is believed to be hard to tell whether x is a quadratic residue mod
n without knowing the factorization of n.

Some other facts: if n is prime, then Z∗n has a generator g and x is a residue iff x = gi for an
even i. This means that if x and y are residues then xy is a residue, but if x is a non-residue
and y is a residue then xy will be equal to gj for an odd j and so will be a non-residue.
Because of the chinese remainder theorem the same holds also if n is a composite.

Another thing is that the quadratic residues are a group. This means that if x and y are
residues then xy is also a residue. This also means that x is a residue and y is a random
residue then xy is a random residue. That is, for every z ∈ QRn, the probability that xy = z
is equal to 1/|QRn|. The reason is that this is the same as the probability that y = x−1z and
since y is chosen at random, this probability is exactly 1/|QRn|.
Protocol QR

Statement x is a quadratic residue mod n.

Public input x , n

Prover’s (Alice) private input. w such that x = w2 (mod n).

P → V Alice chooses random u←R Z∗n and sends y = u2 to Bob.

P ← V Bob chooses b←R {0, 1}
P → V If b = 0, Alice sends u to Bob. If b = 1, Alice sends w · u (mod n).

Verification. Let z denote the number sent by Alice. Bob accepts the proof in the case
b = 0, z2 = y (mod n). In the case b = 1, Bob accepts the proof if z2 = xy (mod n).

Analysis We will want to prove three properties about Protocol QR: completeness, soundness
and zero knowledge. We will present the formal definition as we go along.

Completeness: Completeness means that whenever x is really a quadratic residue, and Alice is
given s such that x = s2 (mod n) and both Alice and Bob follow the instructions, then Bob
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will accept with probability one. Completeness is often easy to see and this is also the case
here.

Soundness: Soundness means that if x is not a quadratic residue, then regardless of what Alice
does, Bob will reject the proof with probability at least 1/2.

To define and prove soundness, we will need to formalize a bit what it means “regardless of
what Alice does”. Suppose that Alice is untrusted and possibly cheating. This means that
she uses a different strategy than the instructions she is supposed to follow in the protocol.
We will model the strategy she uses as a function P ∗ that computes the messages. (Alice
can also use of course randomness, but we’ll “hardwire” any random coins she needs into the
description of P ∗ to make it into a deterministic function. We can also hardwire into P ∗ the
public and private inputs.)

That is, we think of P ∗ as follows: on input the empty word, it gives a string y (which is
Alice’s first message) and on input b it gives a string z (which is Alice’s second and last
message).

We want to prove the following:

Lemma 1. For every (possibly not efficiently computable) P ∗, and (x, n) such that x is not
a QR mod n, we have that

Pr
b←{0,1}

[outV 〈P ∗, Vx,b〉 = accept] ≤ 1
2

Notation: We use P and V to denote the “honest” (i.e., non-cheating / following instruc-
tions) algorithms. We use subscripts to denote the inputs they use which can include public
and private inputs and the random coin tosses.

If two interactive algorithms A and B are running a protocol, we denote this execution by
〈A,B〉. We also use the following notations:

• outA〈A,B〉 - the output of A after this interaction is finished. Similarly we define
outB〈A,B〉.

• viewA〈A,B〉 - the view of A during the interaction: all the messages it received.

Proof. Suppose that x 6∈ QRn. And let P ∗ be any interactive strategy for the prover. Denote
by y the output of P ∗ on the empty input. We note P ∗ is cheating and so need not select y
in the same way the honest prover does. We can make the verifier always reject if y is not of
the proper length and does not satisfy gcd(y, n) = 1. Thus without loss of generality we can
assume y ∈ Z∗n. What we can not assume is that y is a quadratic residue (as would be in the
case of the honest prover). However, we know that y is output before P ∗ sees the query b,
and so it is independent of b. We split into two cases:

• Case 1: y is in QRn. That is, y = u2 (mod n) for some u ∈ Z∗n. In this case, with
probability 1/2 we have that b = 1. Denote z = P ∗(1) be the prover’s last message. The
verifier will accept only if z2 = xy. We claim that this is impossible since if z2 = xy
then zu−1 = z2u−2 = xyy−1 = x but x is not in QRn! Thus the verifier will reject with
probability ≥ 1/2.
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• Case 2: y is not in QRn. In this case with probability 1/2 we have that b = 0. However,
if b = 0 then the prover has to come up with some z such that z2 = y, which is impossible.
Hence also in this case the verifier will reject with probability ≥ 1/2.

Zero knowledge. The zero knowledge property is more tricky to define. For zero knowledge we
now think of a possibly cheating verifier V ∗. However, the power of the verifier is very limited:
he can only send either b = 0 or b = 1. We want to show that in both cases he gets a random
element in Z∗n, which gives him no information about the quadratic residue of x.

The spirit of the definition is that a proof is zero knowledge if whatever Bob learns, he could
have learned by himself without any interaction with Alice. The idea to formalize this is
using the notion of a simulator. That is, we make the following definition:

Definition 1. A prover strategy P is (T, ε)-zero knowledge if for every T -time cheating
strategy V ∗ there exists a poly(T )-time non-interactive algorithm S (called the simulator for
V ∗) such that for every valid public input x and private input w, the following two random
variables are (T, ε)-computationally indistinguishable:

• viewV ∗〈PUm,x,w, V ∗〉. (Where m is the number of random coins P uses

• S(x). (Note that S can be probabilistic and so this is a random variable).

That is, S only gets the public input and has no interaction with P , but still manages to
output something indistinguishable from whatever V ∗ learned in the interaction.

Lemma 2. The prover of Protocol QR is (∞, 2−|x|)-zero knowledge.

Proof. Let V ∗ be a possibly cheating verifier. The simulator S will do the following: (Note
that the simulator can depend on V ∗ and hence in particular can use the strategy V ∗ in its
computation)

1. Input: x, n such that x ∈ QRn. Note that the simulator does not get w such that
x = w2 (mod n).

2. Choose b′ ←R {0, 1}.
3. Choose z ←R QRn.

4. If b′ = 0, compute y = z2. Otherwise (if b′ = 1) compute y = z2x−1.

5. Invoke V ∗ on the message y to obtain a bit b.

6. If b = b′ then output 〈y, z〉. Otherwise, go back to Step 2.

Initially, it is not even clear this algorithm doesn’t loop forever. We make the following claims:

Claim 2.1. In both cases b′ = 0 and b′ = 1, the message y is a random element in QRn.

Proof. In the case b′ = 0 this is obvious. In the case b′ = 1, y is x−1 multiplied by a random
quadratic residue, but since x−1 is also in QRn, the result (as we said above) is a random
element in QRn.
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This implies that y is independent of b′ (since it is the same distribution regardless of whether
b′ = 0 or b′ = 1). Hence we have that b = V ∗(y) is also independent of b′ and hence we have
Pr[b′ = b] = 1

2 . This means that if we run the procedure for k steps, we will halt with very
high (1− 2−k) probability.

We now make the following claim:

Claim 2.2. The output of the simulator is distributed identically to the view of V ∗ in an
interaction with the honest prover.

Proof. We already know that the first message y is a random quadratic residue in both cases.
Now, let b = V ∗(y) and condition on the case that b′ = b (which happens independently of
y with probability 1/2) then for both the prover and simulator if b = 0 then z is a random
root of y and if b = 1 then z is a random root of xy.

This algorithm has small probability of running for a long time. To make into an algorithm
that at the worst case makes at most |x| invocations of V ∗, we can just stop and output
an arbitrary value after more than |x| iterations. We’ll introduce at most 2−|x| statistical
distance this way.
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