Lecture 13 - Public Key Cryptography (continued).

Boaz Barak

November 10, 2005

Different types of permutations. It’s important not to get confused between pseudorandom
permutations (PRP), one way permutations (OWP) and trapdoor permutations (TDP).

One-way permutations. One way permutations are unkeyed - it’s not a collection of functions
but just a single function (or if we think of it as many functions then there’s only one for
every input length). The definition is the following:

Definition 1 (One-way permutations.). A polynomial-time computable function f : {0,1}* —
{0,1}* where for every n , f, (the restriction of f to {0,1}") is a permutation on {0,1}",
is called a one-way permutation if there exist super-polynomial functions 7', n such that for
every T'(n)-sized circuit A

thP{g,l}"[A(f(x)) = 2] < ¢e(n)

One-way permutations can be used to obtain private key encryptions by using their hardcore
bit to a obtain pseudorandom generators, and from it obtaining pseudorandom functions and
CPA (or even CCA) secure encryptions.

One way permutations are “cousins” of one-way functions defined as follows: (for every y we
denote by f~1(y) the set {z | f(z) =1y})

Definition 2 (One-way functions.). A polynomial-time computable function f : {0,1}* —
{0,1}* is called a one-way function if there exist super-polynomial functions 7', n such that
for every T'(n)-sized circuit A

Pr [A(f(z)) € f7H(f(x))] < e(n)

r—gr{0,1}"

Like one-way permutations, one way functions are also unkeyed primitives. It’s easy to see
that any one-way permutations is a one-way function but not vice versa (a one-way function
does not have to be a permutation). It’s also known (through a much harder proof by Hastad,
Impagliazzo, Luby and Levin) that one-way functions imply pseudorandom generators (which
imply private-key encryption).

Pseudorandom permutations. Pseudorandom permutations (PRP) are keyed: there are many
for each input length. The security they offer is incomparable to one-way permutations: if
the adversary only has black-box access to a pseudorandom permutation, then it is indistin-
guishable form a random permutation. This implies that it is one-way (it’s hard to invert a
random input) but much more than that (for example its also hard to invert a non-random
input). However, if the adversary knows the key then the permutation becomes in fact easy
to invert.

Definition 3 (Pseudorandom permutations). A collection of permutations {py }reo,1}+ where
for k € {0,1}", py, is a permutation over {0,1}™™ isa pseudorandom-permutation collection
if it satisfies:!
e (Efficient computation) The functions (k,x) — pg(x) and (k,y) — plzl(y) are efficiently
computable (i.e., in polynomial time).
e (Pseudorandomness) There are super polynomial functions T, € such that for every T'(n)
time adversary Adv,

< €(n)

Pr [Advm')@z? ‘Omy = 1] . Pr [AvaU’P‘l(’)(m) _ 1}
k—r{0,1}" P—gr{0,1}m = 0,1}m

(The notation Adv/*Y means that the adversary is given oracle access to the functions
f(), g(-) which naturally it can query for at most 7" times. If an event happens with
probability at most 1/ n®() then we say it happens with negligible probability.)

Pseudorandom permutations yield almost directly (by some padding) CPA (and in fact even
CCA) secure private key encryption schemes. They are closely related to pseudorandom
functions in the sense that (1) every pseudorandom permutation collection is also a pseudo-
random function collection (2) we can construct a pseudorandom permutation collection from
a pseudorandom function collection (we did not see this but this is in Goldreich).

Trapdoor permutations. As far as we know, both one-way and pseudorandom permutations
do not help us to get public key encryption schemes. The way we obtain these is by using
trapdoor permutations. These are keyed collections with the following property: there are two
keys for each function: one to compute it in the forward direction and one to compute it in
the reverse direction (invert it). Now the key for the forward direction can be given to the
adversary (not inside a black box but really given to him) and still this will not help him
invert the function (that is, the function is a one-way permutation to someone not knowing
the invertion key or “trapdoor”).

Definition 4 (One-way permutations.). A trapdoor permutation consists of three polynomial-
time algorithms G, F, B where G is probabilistic and F, B deterministic satisfying the follow-
ing:

e For every n and pair (f,b) = G(1"), the function x — F(x) is a permutation over some
set S. Furthermore, the function By(+) is the inverse of that permutation. That is, for
every x € S, By(Fy(x)) = .

e The set S is efficiently sampleable: there is a polynomial-time algorithm to output a
random element of S (or a distribution statistically close to a random element of S).

e For a random (f,b) < G(1"), the function x — Fy(x) is a one-way permutation even
if the adversary knows f. That is, there exist super-polynomial functions T',n such that
for every T'(n)-sized circuit A

P A 7F _ S
(f,b)hRG(fn),xHRS[(f, Fy(z)) = 2] < €e(n)

Examples of pseudorandom permutations.

1/c

!We assume that m and n are polynomially related. That is, n'/¢ < m(n) < n® for some constant c.

RSA function RSA stands for Rivest, Shamir and Adelman this is the first trapdoor permutation
suggested (in 1977) and is still the most widely used.

e Keys: choose p,g random primes of length ¢, n = p-gq. Note that ¢(n) = |Z}| =
(p—1)(¢ — 1) choose e at random from 2 (that is, gcd(e, p(n)) = 1. Note that ¢(n)
is even and hence, unlike in the Rabin case, e can not be two.

e Forward (public) key: n,e

e Backward (inversion/trapdoor) key: d such that d = e~! (mod ()¢(n)). That is, ed =
kp(n) + 1. Note that d can be computed from ¢(n) (which can be computed using the
factorization p, g of n.

e Forward evaluation: RSA,, .(z) = 2° (mod ()n).

e RSA, .(x) is a permutation on Z;. We show this by giving the inverse: if z € Zj
let y = RSA,e(z) = ¢ (mod n). Then, y¢ (mod n) = z. Indeed, for every group

G and element a € G we have that a/%l = 1 and so in particular 2% = 1. Hence

Note that we can generate a random element of Z; by choosing a random number z in
0,1,...,n — 1 and verifying that gcd(x,n) = 1. The probability for that is overwhelming
since there are (p —1)(¢ — 1) = pg — p — ¢ + 2 elements in Z} and so only a tiny fraction of
the pg numbers between 0 and n — 1 are not in Z;.

The RSA Assumption is that the RSA function is indeed a trapdoor permutation. It is
known to be a stronger assumption than the assumption that factoring random integers is
hard (by random I mean product of two large random primes). However, it is not known
whether or not these assumptions are equivalent. That is, as far as we know, it may be the
case that there is an efficient algorithm to invert the RSA function even if there is no efficient
factoring algorithm.

Rabin trapdoor permutations. The Rabin function is not exactly a permutation (it is 4 to
1). However, as was shown by Blum and Williams it can be modified to be a trapdoor
permutation assuming factoring random Blum integers is hard. A Blum integer is a number
n = pq where p,q = 3 (mod ()4).

e Keys: choose p, g random primes of length ¢ with p,q =3 (mod 4), n = p-q. Note that
6(n) = (p— 1)(q — 1) = (4k +2) (4’ +2) = 4k
Forward (public) key: n

Backward (inversion/trapdoor) key: p, q.

Forward evaluation: RABIN,,(z) = 2% (mod ()n).

RABIN,(z) is a permutation on QR,, where QR,, is the set of quadratic residues modulu
n. We show this by giving the inverse: if x € Z let y = RABIN,,(z) = 2% (mod n).
Our inverse will be the following: we’ll compute a = y (mod p) and b = y (mod q).
Recall that p,q = 3 (mod 4) and so we can say p = 4t + 3 and ¢ = 4t' + 3. We'll
compute 21 = a'*! (mod p) and x5 = b (mod ¢) and invert (z;, z3) using the chinese
remainder theorem to get 2’. If we prove ' = x then we're done.

Because Chinese remaindering is a one-to-one operation it is enough to prove that x; = x
(mod p) and x93 = x (mod ¢). We'll use here the fact that z was itself a quadratic residue
and hence = = s? (mod n) for some s.

We know that z (mod p) = s? (mod p) and hence z1 = (22)!+! = 52D = gp=142 — 42
(mod p) =z (mod p).

2 (mod ¢) and hence we're done.

Similarly zo = s
Note that again we can sample from a distribution close to the uniform distribution over QR,,
by choosing a random s in {1,...,n — 1} and letting x = s?> (mod n).

The proof that inverting Rabin’s function is equivalent to factoring can be extended to show
that inverting Rabin’s function on QR,, is equivalent to factoring n for n a random Blum
integer. (This is your homework.)

Thus if factoring such integers is hard we have a trapdoor permutation collection which we
can then use to obtain a public key encryption scheme.

Key exchange and the Diffie-Hellman protocol. Alice and Bob can communicate securely
over a line eavesdropped by Eve by having Alice generate a keypair (e, d) for a public-key
encryption scheme, send to Bob e, and then Bob can send messages to Alice by encrypting
them with e.

However, this is not necessarily the only way to do so. A different approach is using a key
exchange protocol. The first (and still most used) such protocol was given in the same paper by
Diffie and Hellman where they first suggested the “crazy” notion of public key cryptography.
We’ll first present the protocol and then talk about its security goals.

They use the fact that the group Z, for a prime p is cyclic. This means that there is some
number g € Zy such that Zj = {1,9,6% 6%, ...,9""%}. g is called a generator for the group.
In other words, for every element x € Z;, there is an ¢ € {0,...,p — 2} such that z = ¢
(mod p). This number i is called the discrete log of x with respect to g.

It is known how to efficiently find a generator g for Zj given a prime p. It is not known how
to compute the discrete logarithm and this problem is believed to be hard.

The Diffie-Hellman protocol:

Alice chooses prime p at random and finds a generator g.

Alice chooses x < {0,1,...,p — 2} and sends p, g and & = g* (mod p) to Bob.

Bob chooses y «—x {0,1,...,p — 2} and sends § = ¢Y (mod p) to Alice.

Alice and Bob both compute & = ¢*¥ (mod p). Alice does that by computing §* and
Bob does this by computing zY.

e They then use k as a key to exchange messages using a private key encryption scheme.

Clearly, if Eve can compute the discrete log and obtain z from Z or y from ¢ then this
protocol is insecure. Thus the assumption that DH key exchange is secure is stronger than
the assumption that the discrete log function is hard to compute (or in other words, that
the exponentiation function is a one-way permutation). However, as far as we know, this
assumption is not sufficient for the security of Diffie-Hellman protocol. We need a stronger
assumption which is the following;:

Decisional Diffie Hellman (DDH) assumption — Take 1. For every prime p and
generator g of Zy, the following two distributions A and B over triplets are computationally
indistinguishable: A = (¢*, g’¢™¥) for random z and y in {1,...,p — 2} and B = (¢*, ¢, 2)
for random x and y in {1,...,p — 2} and zinZ;,.

4

This assumption implies that as far as Eve is considered, the key k is a random element in
Z, (i.e., a random number between 1 and p — 1) and hence can be safely used as a key for
any private key encryption scheme. For example, to send a message m of length ¢, Bob can
send Alice k & m.

Unfortunately, this assumption is not true (although as far as we know it is “morally true”)
for a very simple reason: given a number § € Z,, we can check if it has a square root modolu
p (i.e., whether it is a quadratic residue). It is known that ¢* is a quadratic residue if and
only if x is even. Thus, given ¢* and g¥ we can test whether x and y are even (which happens
with probability 1/4) and in this case ¢g*¥ will be also a quadratic residue, while a random
element in Z; will only be in QR;, with probability 1 /2.

Fortunately, the assumption can be made for other groups in which it is believed to be
true. Ome such group is the subgroup of quadratic residues mod p, for p of the form p =

2g+1. See http://crypto.stanford.edu/~dabo/abstracts/DDH.html for more about this
assumption.

