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Divisibility and primes Unless mentioned otherwise throughout this lec-
ture all numbers are non-negative integers. We say that a divides b,
denoted alb if there’s a k such that ka = b. We say that p is prime if for
a >0, alponly fora=1and a =p

Unique factorization.
Theorem 1 (Unique factorization). For every n > 0, there are unique

primes pi,...,pr such as n is the multiplication of these primes.

We typically order the primes from small to big, and group together
multiplications of the same prime, and so the unique factorization of n
is its representation of the form pi' - py - - - p’.

Basic property of prime and co-prime numbers. Two easy consequences
of the unique factorization theorem:

e If p and ¢ are co-prime and both p|n and ¢|n, then pg|n.
e If p|ab then either p|a or p|b.

How many primes exist. Another nice fact to know about primes is that
there are infinitely many of them. (It is not immediately obvious from the
unique factorization theorem — initially you might think that perhaps
the only primes are {2, 3,5} and all other numbers are of the form 2¢37/5%)

In fact, we have the following theorem:

Theorem 2 (Chebychev’s theorem). Let p(n) denote the number of
primes between 1 and n. Then, p(n) = Q(=).
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This means in particular that if you choose a random /¢-bit integer, with
probability Q(%) it will be prime. Chebychev’s theorem actually has a
very short and simple proof (see Shoup’s book). It is known actually that
p(n) = =(1+o0(1)). This is called the prime number theorem (there’s
also an OK proof for this).



g.c.d For two integers a and b, their g.c.d is the largest d such that d|a and
d|b. The g.c.d can be shown to be the largest common part of their
factorization. That is, if p,q,r are primes and a = pg®> and b = ¢’r
then ged(a,b) = ¢*. If a and b factor into disjoint sets of primes then
gcd(a,b) = 1. In particular for every two different primes p, ¢ ged(p, q) =
1. If ged(a,b) = 1 we say that a and b are co-prime to one another.

Modulu For every two numbers a and b there is unique k£ and r such that
0<r<b—1and a=kb+r. In this case we say that r = a (mod b).
Clearly bla iff a (mod b) = 0. Also note that for all a, b, c

a+b (modc)=(a (modc)+b (modc)) (mod:c)

and

a-b (modc)=(a (modc)-b (modc)) (mod c)

If a (mod b) = @’ (mod b) we say that a and a’ are equivalent modulu
b, sometimes denoting this by a = d’.

We denote by Z; the set {0,...,0 — 1}. When we add or multiply two
elements from Z; we use addition/multiplication modulu b.

Chinese reminder theorem. Let p and ¢ be two prime numbers (actually
can be also just co-prime) and let n = pq. Consider the following function
from Z, to Z, x Z;: f(x) = (z (mod p),z (mod ¢q)). We claim the
following properties of this function:

1. f(-) preserves addition: f(z+ ') = f(z)+ f(2/). (In the right hand
side f(x) 4+ f(2') means that we add the first element of both pairs
mod p and the second element mod ¢. This follows from the fact
that the modulu operation has this property.

2. f(+) preserves multiplication: f(x -z') = f(z)- f(2'). Again, this
follows from the fact that the modulu operation has this property.

3. f(+) is one-to-one. Indeed, if there exist x > 2’ with f(z) = f(2/)
then f(x—2a') = (0,0). Which means that p|z —2" and ¢|x — 2’ which
implies pg = n|r — 2’ which can’t happen for a number between 1
and n — 1.

4. f(-) is onto. This follows from the fact that |Z,| = |Z,| - |Z,].

Operations we can do efficiently We can do the following operations ef-
ficiently (polynomial in the number of bits it takes to describe the inputs)
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1. Addition and multiplication modulu some n

2. Exponentiation modulu n. We can not compute z¥ (mod n) by re-
peated multiplications since that can take y operation which is too
many. Rather we separate y to a sum of powers of two (binary nota-
tion): y = 2/ 4+ 27 + 2% thus we need to compute 22 cdota? - 22" We
can compute 2% in i multiplications by repeated squaring.

3. Taking inverse modulu n. If ged(x,n) = 1 then the extended gcd
algorithm gives a y such that zy (mod n) = 1. We sometimes denote

y:x_l.

Non-trivial efficient operations. We’ll show we can do the following two
things efficiently:

1. Take a square root modulu a prime. That is, for a prime p and
a € Z,, find b such that a = b* (mod p) if such a b exists.

2. Primality testing: given a number n decide whether it is a prime or
a composite number.

Fermat’s little theorem We’'ll use the following theorem of Fermat: for
every prime p and number 1 < a < p—1. a? ! =1 (mod p). We note
that this is actually a consequence of a more general theorem on groups.

Facts about square roots. When we work in Z,, we denote by —z the
number such that x —z = 0 (mod p). In other words, —z = p— x. Note
that it’s always the case that x # —x since otherwise we’d have 2z = p
which means that p is even. We know that over the reals any number
a has either zero square roots (if its negative) or two square roots ++/a
and —y/a if its positive. It turns out a similar thing holds for Z,: every
a € Z, has either no square roots, or two square roots of the form z and
—.

To prove this first note that if 22 = a (mod p) then (—z)* = a (mod p).
Thus, if a has any square roots it has at least two of them. Now we’ll
prove that if x and y are square roots of the same value then x = +y.
Indeed, if 22 = y? (mod p) this means that 22 — y*> = 0 (mod p) or that
pl(x+y)(z—y). Since p is prime this means that either p|x 4y (meaning
r = —y (mod p)) or p|r —y (meaning = = y (mod p)).

Taking square root modulu prime: We’re given a prime p and a number
a which has a square root x, and we want to find = (or —z). We can
assume p is odd (if p is the only even prime, namely two, then we can
easily solve this problem mod p). p (mod 4) can be either 1 or 3. We
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start with the case that p (mod 4) = 3. That is, p = 4t 4+ 3. In this case
we claim that a'™! is a square root of a.

Indeed, write @ = z2. Then (a!™)? = 24+ = pl+d — pr=1+2 —
P2 =1-a.
Seehttp://www.wisdom.weizmann.ac.il/~oded/PS/RND/111.ps for the

algorithm in the case p =1 (mod 4). (We note that in that case we use
a probabilistic algorithm).

Square roots modulu composites We note the following property about
square roots modulu composites: if an odd number n is a product of
(powers of) at least 2 distinct primes, then every number a that has
square root mod n, has at least 4 square roots. Indeed, if n is of this
form then n = pq for some co-prime p and ¢ (i.e., p is the power of the
first prime, and ¢ is the rest).

If 22 = a (mod n) then consider the Chinese-remainder function f(-)
and denote f(z) = (2/,2") and f(a) = (a’,a”). Then, we get that
(2", 2") = (a’?, a?) but this holds also for all four possible combinations
(+2!, +2").

Primality testing: Let SQRT (a,p) denote our algorithm that on input a, p
outputs either “fail” or a number x such that z*> = a (mod p). We’ll use
that to test whether n is prime. To test whether n is prime, we first
check that n is odd and is not a power of some number. If not, we
choose a random number 1 < z < n — 1, compute a = 22 (mod n) and
run SQRT (a,p). If it returns “fail” decide that n is a composite. If it
returns some number 2z’ such that 2’ = a (mod p) then if 2’ = +x then
decide that n is a prime. Otherwise decide that n is a composite.

Theorem 3. If n is prime then our algorithm finds this with probability
at least 0.99. If n is composite then algorithm finds this with probability
0.1.

(Note that we can amplify the success probability of this algorithm using
generic techniques.)

Proof. First for our analysis We first make SQRT into a deterministic
algorithm by simply choosing coins for SQRT and hardwiring it into
to the algorithm. The case of n prime is pretty easy. Suppose n is a
composite which is odd and is not a prime power. For every x, say that
x is “good” if SQRT (z?) is either “fail” or is equal to ' # +x. Since
there are at least 4 roots for every a, we get that at least two of them



are good (there are at most two bad roots for each a). If we hit a good
x then we output the right answer. ]



