Lecture 11 - Basic Number Theory.

Boaz Barak

October 20, 2005

Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that a divides b, denoted a|b if there's a k such that ka = b. We say that p is prime if for a > 0, a|p only for a = 1 and a = p

Unique factorization.

Theorem 1 (Unique factorization). For every n > 0, there are unique primes p_1, \ldots, p_k such as n is the multiplication of these primes.

We typically order the primes from small to big, and group together multiplications of the same prime, and so the unique factorization of n is its representation of the form $p_1^{i_1} \cdot p_2^{i_2} \cdots p_\ell^{i_\ell}$.

- **Basic property of prime and co-prime numbers.** Two easy consequences of the unique factorization theorem:
 - If p and q are co-prime and both p|n and q|n, then pq|n.
 - If p|ab then either p|a or p|b.
- How many primes exist. Another nice fact to know about primes is that there are infinitely many of them. (It is not immediately obvious from the unique factorization theorem — initially you might think that perhaps the only primes are $\{2, 3, 5\}$ and all other numbers are of the form $2^i 3^j 5^k$) In fact, we have the following theorem:

Theorem 2 (Chebychev's theorem). Let p(n) denote the number of primes between 1 and n. Then, $p(n) = \Omega(\frac{n}{\log n})$.

This means in particular that if you choose a random ℓ -bit integer, with probability $\Omega(\frac{1}{\ell})$ it will be prime. Chebychev's theorem actually has a very short and simple proof (see Shoup's book). It is known actually that $p(n) = \frac{n}{\ln n}(1 + o(1))$. This is called the prime number theorem (there's also an OK proof for this).

- **g.c.d** For two integers a and b, their g.c.d is the largest d such that d|a and d|b. The g.c.d can be shown to be the largest common part of their factorization. That is, if p, q, r are primes and $a = pq^2$ and $b = q^3r$ then $gcd(a,b) = q^2$. If a and b factor into disjoint sets of primes then gcd(a,b) = 1. In particular for every two different primes $p, q \ gcd(p,q) = 1$. If gcd(a,b) = 1 we say that a and b are *co-prime* to one another.
- **Modulu** For every two numbers a and b there is unique k and r such that $0 \le r \le b-1$ and a = kb + r. In this case we say that $r = a \pmod{b}$. Clearly b|a iff $a \pmod{b} = 0$. Also note that for all a, b, c

 $a+b \pmod{c} = (a \pmod{c} + b \pmod{c}) \pmod{c}$

and

 $a \cdot b \pmod{c} = (a \pmod{c} \cdot b \pmod{c}) \pmod{c}$

If $a \pmod{b} = a' \pmod{b}$ we say that a and a' are *equivalent* modulu b, sometimes denoting this by $a \equiv_b a'$.

We denote by \mathbb{Z}_b the set $\{0, \ldots, b-1\}$. When we add or multiply two elements from \mathbb{Z}_b we use addition/multiplication modulu b.

- **Chinese reminder theorem.** Let p and q be two prime numbers (actually can be also just co-prime) and let n = pq. Consider the following function from \mathbb{Z}_n to $\mathbb{Z}_p \times \mathbb{Z}_q$: $f(x) = \langle x \pmod{p}, x \pmod{q} \rangle$. We claim the following properties of this function:
 - 1. $f(\cdot)$ preserves addition: f(x + x') = f(x) + f(x'). (In the right hand side f(x) + f(x') means that we add the first element of both pairs mod p and the second element mod q. This follows from the fact that the modulu operation has this property.
 - 2. $f(\cdot)$ preserves multiplication: $f(x \cdot x') = f(x) \cdot f(x')$. Again, this follows from the fact that the modulu operation has this property.
 - 3. $f(\cdot)$ is one-to-one. Indeed, if there exist x > x' with f(x) = f(x')then $f(x-x') = \langle 0, 0 \rangle$. Which means that p|x-x' and q|x-x' which implies pq = n|x - x' which can't happen for a number between 1 and n-1.
 - 4. $f(\cdot)$ is onto. This follows from the fact that $|Z_n| = |Z_p| \cdot |Z_q|$.
- **Operations we can do efficiently** We can do the following operations efficiently (polynomial in the number of bits it takes to describe the inputs)

- 1. Addition and multiplication modulu some n
- 2. Exponentiation modulu n. We can not compute $x^y \pmod{n}$ by repeated multiplications since that can take y operation which is too many. Rather we separate y to a sum of powers of two (binary notation): $y = 2^i + 2^j + 2^k$ thus we need to compute $x^{2^i} cdot x^{2^j} \cdot x^{2^k}$. We can compute x^{2^i} in i multiplications by repeated squaring.
- 3. Taking inverse modulu n. If gcd(x, n) = 1 then the extended gcd algorithm gives a y such that $xy \pmod{n} = 1$. We sometimes denote $y = x^{-1}$.

Non-trivial efficient operations. We'll show we can do the following two things efficiently:

- 1. Take a square root modulu a prime. That is, for a prime p and $a \in \mathbb{Z}_p$, find b such that $a = b^2 \pmod{p}$ if such a b exists.
- 2. Primality testing: given a number n decide whether it is a prime or a composite number.
- **Fermat's little theorem** We'll use the following theorem of Fermat: for every prime p and number $1 \le a \le p 1$. $a^{p-1} = 1 \pmod{p}$. We note that this is actually a consequence of a more general theorem on groups.
- Facts about square roots. When we work in \mathbb{Z}_p , we denote by -x the number such that $x x = 0 \pmod{p}$. In other words, -x = p x. Note that it's always the case that $x \neq -x$ since otherwise we'd have 2x = p which means that p is even. We know that over the reals any number a has either zero square roots (if its negative) or two square roots $+\sqrt{a}$ and $-\sqrt{a}$ if its positive. It turns out a similar thing holds for \mathbb{Z}_p : every $a \in \mathbb{Z}_p$ has either no square roots, or two square roots of the form x and -x.

To prove this first note that if $x^2 = a \pmod{p}$ then $(-x)^2 = a \pmod{p}$. Thus, if a has any square roots it has at least two of them. Now we'll prove that if x and y are square roots of the same value then $x = \pm y$. Indeed, if $x^2 = y^2 \pmod{p}$ this means that $x^2 - y^2 = 0 \pmod{p}$ or that p|(x+y)(x-y). Since p is prime this means that either $p|x+y \pmod{p}$. $x = -y \pmod{p}$ or $p|x-y \pmod{p}$.

Taking square root modulu prime: We're given a prime p and a number a which has a square root x, and we want to find x (or -x). We can assume p is odd (if p is the only even prime, namely two, then we can easily solve this problem mod p). $p \pmod{4}$ can be either 1 or 3. We

start with the case that $p \pmod{4} = 3$. That is, p = 4t + 3. In this case we claim that a^{t+1} is a square root of a.

Indeed, write $a = x^2$. Then $(a^{t+1})^2 = x^{4(t+1)} = x^{4t+4} = x^{p-1+2} = x^{p-1}x^2 = 1 \cdot a$.

See http://www.wisdom.weizmann.ac.il/~oded/PS/RND/l11.ps for the algorithm in the case $p = 1 \pmod{4}$. (We note that in that case we use a probabilistic algorithm).

Square roots modulu composites We note the following property about square roots modulu composites: if an odd number n is a product of (powers of) at least 2 distinct primes, then every number a that has square root mod n, has at least 4 square roots. Indeed, if n is of this form then n = pq for some co-prime p and q (i.e., p is the power of the first prime, and q is the rest).

If $x^2 = a \pmod{n}$ then consider the Chinese-remainder function $f(\cdot)$ and denote f(x) = (x', x'') and $f(a) = \langle a', a'' \rangle$. Then, we get that $\langle x'^2, x''^2 \rangle = \langle a'^2, a''^2 \rangle$ but this holds also for all four possible combinations $\langle \pm x', \pm x'' \rangle$.

Primality testing: Let SQRT(a, p) denote our algorithm that on input a, p outputs either "fail" or a number x such that $x^2 = a \pmod{p}$. We'll use that to test whether n is prime. To test whether n is prime, we first check that n is odd and is not a power of some number. If not, we choose a random number $1 \le x \le n - 1$, compute $a = x^2 \pmod{n}$ and run SQRT(a, p). If it returns "fail" decide that n is a composite. If it returns some number x' such that $x'^2 = a \pmod{p}$ then if $x' = \pm x$ then decide that n is a prime. Otherwise decide that n is a composite.

Theorem 3. If n is prime then our algorithm finds this with probability at least 0.99. If n is composite then algorithm finds this with probability 0.1.

(Note that we can amplify the success probability of this algorithm using generic techniques.)

Proof. First for our analysis We first make SQRT into a deterministic algorithm by simply choosing coins for SQRT and hardwiring it into to the algorithm. The case of n prime is pretty easy. Suppose n is a composite which is odd and is not a prime power. For every x, say that x is "good" if $SQRT(x^2)$ is either "fail" or is equal to $x' \neq \pm x$. Since there are at least 4 roots for every a, we get that at least two of them

are good (there are at most two bad roots for each a). If we hit a good x then we output the right answer.