Handout 5: One-Way Permutations, Number Theory

Boaz Barak

Total of 120 points. Exercises due October 25th, 2005 1:30pm.

Exercise 1 (50 points). The Goldreich-Levin theorem says that we can transform every one-way permutation $f(\cdot)$ into a one-way permutation $f'(\cdot)$ such that f' has a hard-core bit $h(\cdot)$. The transformation is the following:

- Given $f: \{0,1\}^n \to \{0,1\}^n$, define $f': \{0,1\}^{2n} \to \{0,1\}^{2n}$ as follows: for $x, r \in \{0,1\}^n$ define $f'(x \circ r) = f(x) \circ r$. (Where \circ denotes concatenation.)
- The function $h : \{0,1\}^{2n} \to \{0,1\}$ is defined as follows: $h(x \circ r) = \sum_{i=1}^{n} x_i r_i \pmod{2}$. This is also sometimes called the *inner product* of x and r modulu 2, and we'll denote $h(x \circ r)$ by $\langle x, r \rangle$
- 1. Prove that if $f(\cdot)$ is a one-way permutation then so is $f'(\cdot)$.
- 2. The main part of the Goldreich-Levin theorem is the following lemma:

Lemma 1 (GL Lemma). Let $x \in \{0,1\}^n$ be some string and $\epsilon > 0$ some number, and let $A : \{0,1\}^n \to \{0,1\}$ be a function such that for a random $r \leftarrow_R \{0,1\}^n$, the probability that $A(r) = \langle x,r \rangle$ is at least $\frac{1}{2} + \epsilon$.

Then, there exists a polynomial in n time algorithm B that given black-box access to A outputs x with probability at least $\frac{\epsilon^2}{n^5}$.

Assuming Lemma 2, prove that the function $h(\cdot)$ is indeed a hard-core for $f'(\cdot)$. Do this by proving that if there's a *T*-time algorithm *A* such that

$$\Pr_{x,r \in \{0,1\}^n} [A(f'(x,r)) = h(x,r)] \ge \frac{1}{2} + \epsilon$$

Then there is an algorithm A' with running time polynomial in T and n such that

$$\Pr_{x \in \{0,1\}^n}[A(f(x)) = x] \ge \epsilon'$$

Where ϵ' is polynomial in ϵ and n.

Hint: Define "good" x's to be x's such that $\Pr_{r \leftarrow_{\mathrm{R}}\{0,1\}^n}[A(x,r) = h(x,r)] \ge \frac{1}{2} + \frac{\epsilon^2}{100}$. Show that there are not too few good x's and use the lemma to give an algorithm A' that inverts f on these good x's.

3. Prove the following "toy version" of Lemma 2:

Lemma 2 (GL Lemma - probability 1 case). Let $x \in \{0,1\}^n$ be some string. There exists a polynomial in n time algorithm B that given black-box access to the function $r \mapsto \langle x, r \rangle$ outputs x.

4. Prove the following "reduced version" of Lemma 2:

Lemma 3 (GL Lemma - probability 0.9 case). Let $x \in \{0,1\}^n$ be some string and let $A : \{0,1\}^n \to \{0,1\}$ be a function such that for a random $r \leftarrow_R \{0,1\}^n$, the probability that $A(r) = \langle x,r \rangle$ is at least 0.9.

Then, there exists a polynomial in n time algorithm B that given black-box access to A outputs x with probability at least 0.1.

Exercise 2 (20 points). Recall that an Abelian group G is a set of elements with an operation \star that satisfies the following properties:

- Associativity: for all $a, b, c \in G$, $(a \star b) \star c = a \star (b \star c)$.
- Commutativity: for all $a, b \in G$, $a \star b = b \star a$
- Identity: there exists an element $e \in G$ such that for all $a \in G$, $a \star e = e \star a = a$. (We'll often denote the identity element by 1)
- Inverse: for every $a \in G$, there exists an element a' such that $a \star a' = a' \star a = e$ where e is an identity element. (We'll often denote a' by a^{-1} .)

Prove that for every n, the set of numbers x < n with gcd(x,n) = 1 with the operation $a \star b = a \cdot b \pmod{n}$ is an Abelian group. (You can take for granted properties of normal (non-modulu) multiplication such as associativity and commutativity.)

We denote this group by \mathbb{Z}_n^* and denote its size by $\phi(n)$. Note that clearly for every prime p, $\phi(p) = p - 1$.

Exercise 3 (15 points). Let G be an Abelian group of finite size n, and let $a \in G$. Prove that there exists a number k such that $a^k = 1$ (where $a^k = \underbrace{a \star a \star \cdots \star a}_{k \text{ times}}$). **Hint:** As a first step, show

that there must be numbers $\ell < j$ such that $a^{\ell} = a^{j}$.

The smallest such k is called the *order* of a and it turns out that it's always the case that k|n and thus it's always the case that $a^n = 1$.

Exercise 4 (20 points). Let G be an Abelian group with an operation \star and let G' be the subset of G where $y \in G'$ if and only if $y = x^2$ for some $x \in G$. Prove that G' with the operation \star is also an Abelian group.

We note that G' is called the subgroup of quadratic residues of G.

Exercise 5 (15 points). Let G be an Abelian group. G is called *cyclic* if there is an element $g \in G$ such that for every $a \in G$ there is an integer k such that $a = g^k$ (and thus G is simply the set $\{1 = g^0, g = g^1, g^2, \ldots, g^{n-1}\}$.

Prove that for every cyclic group G of size n for an even number n, the set of quadratic residues of G is exactly the set $\{g^{2k} \mid k = 0, 1, 2, \dots, n/2 - 1\}$.