Handout 5: One-Way Permutations, Number Theory

Boaz Barak

Total of 120 points.
Exercises due October 25th, 2005 1:30pm.

Exercise 1 (50 points). The Goldreich-Levin theorem says that we can transform every one-way
permutation f(-) into a one-way permutation f’(-) such that f’ has a hard-core bit h(-). The
transformation is the following:

e Given f:{0,1}" — {0,1}", define f": {0,1}?>" — {0,1}?" as follows: for z,7 € {0,1}" define
f'(xor)= f(x)or. (Where o denotes concatenation.)

e The function h : {0,1}*" — {0,1} is defined as follows: h(zor) = > " | x;r; (mod 2). This
is also sometimes called the inner product of x and r modulu 2, and we’ll denote h(x o r) by

(z,7)
1. Prove that if f(-) is a one-way permutation then so is f/().
2. The main part of the Goldreich-Levin theorem is the following lemma:

Lemma 1 (GL Lemma). Let z € {0,1}" be some string and € > 0 some number, and let
A :{0,1}" — {0,1} be a function such that for a random r <5 {0,1}", the probability that
A(r) = (z,r) is at least & +e.

Then, there exists a polynorgial in n time algorithm B that given black-box access to A outputs
x with probability at least .

Assuming Lemma 2, prove that the function A(-) is indeed a hard-core for f’(-).

Do this by proving that if there’s a T-time algorithm A such that

L A ) = b )] > % .

Then there is an algorithm A’ with running time polynomial in 7" and n such that

P A =z >¢€
a:e{o,rl}n[ (f(x)=2]>e
Where ¢’ is polynomial in € and n.

Hint: Define “good” z’s to be z’s such that Pr,__(013»[A(x,7) = h(z,7)] > 1+ %. Show
that there are not too few good z’s and use the lemma to give an algorithm A’ that inverts
f on these good z’s.

3. Prove the following “toy version” of Lemma 2:



Lemma 2 (GL Lemma - probability 1 case). Let x € {0,1}" be some string. There exists
a polynomial in n time algorithm B that given black-box access to the function r — (x,r)
outputs x.

4. Prove the following “reduced version” of Lemma 2:

Lemma 3 (GL Lemma - probability 0.9 case). Let z € {0,1}" be some string and let A :
{0,1}" — {0,1} be a function such that for a random r «—j5 {0,1}", the probability that
A(r) = (z,r) is at least 0.9.

Then, there exists a polynomial in n time algorithm B that given black-box access to A outputs
x with probability at least 0.1.

Exercise 2 (20 points). Recall that an Abelian group G is a set of elements with an operation *
that satisfies the following properties:

e Associativity: for all a,b,c € G, (axb)xc=ax (b*c).
e Commutativity: for all a,b € G , axb=bxa

o Identity: there exists an element e € G such that for all a € G, axe = exa = a. (We'll often
denote the identity element by 1)

e Inverse: for every a € G, there exists an element a’ such that axa’ = a’ xa = e where ¢ is an
identity element. (We'll often denote a’ by a='.)

Prove that for every n, the set of numbers z < n with ged(z,n) = 1 with the operation
axb=a-b (modn) is an Abelian group. (You can take for granted properties of normal (non-
modulu) multiplication such as associativity and commutativity.)

We denote this group by Z! and denote its size by ¢(n). Note that clearly for every prime p,

o(p) =p—1.

Exercise 3 (15 points). Let G be an Abelian group of finite size n, and let a € G. Prove that
there exists a number k such that a* = 1 (where a* = gxax---xa). Hint: As a first step, show
k times
that there must be numbers ¢ < j such that a’ = a/.
The smallest such k is called the order of a and it turns out that it’s always the case that k|n
and thus it’s always the case that a™ = 1.

Exercise 4 (20 points). Let G be an Abelian group with an operation x and let G’ be the subset
of G where y € G’ if and only if y = 22 for some 2 € G. Prove that G’ with the operation x is also
an Abelian group.

We note that G’ is called the subgroup of quadratic residues of G.

Exercise 5 (15 points). Let G be an Abelian group. G is called cyclic if there is an element g € G
such that for every a € G there is an integer k such that a = ¢* (and thus G is simply the set
{(1=¢"9=9"9% ..,9" '}

Prove that for every cyclic group G of size n for an even number n, the set of quadratic residues
of G is exactly the set {¢%* |k =0,1,2,...,n/2 — 1}.



