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Total of 120 points.
Exercises due October 25th, 2005 1:30pm.

Exercise 1 (50 points). The Goldreich-Levin theorem says that we can transform every one-way
permutation f(·) into a one-way permutation f ′(·) such that f ′ has a hard-core bit h(·). The
transformation is the following:

• Given f : {0, 1}n → {0, 1}n, define f ′ : {0, 1}2n → {0, 1}2n as follows: for x, r ∈ {0, 1}n define
f ′(x ◦ r) = f(x) ◦ r. (Where ◦ denotes concatenation.)

• The function h : {0, 1}2n → {0, 1} is defined as follows: h(x ◦ r) =
∑n

i=1 xiri (mod 2). This
is also sometimes called the inner product of x and r modulu 2, and we’ll denote h(x ◦ r) by
〈x, r〉

1. Prove that if f(·) is a one-way permutation then so is f ′(·).

2. The main part of the Goldreich-Levin theorem is the following lemma:

Lemma 1 (GL Lemma). Let x ∈ {0, 1}n be some string and ε > 0 some number, and let
A : {0, 1}n → {0, 1} be a function such that for a random r ←R {0, 1}n, the probability that
A(r) = 〈x, r〉 is at least 1

2 + ε.

Then, there exists a polynomial in n time algorithm B that given black-box access to A outputs
x with probability at least ε2

n5 .

Assuming Lemma 2, prove that the function h(·) is indeed a hard-core for f ′(·).
Do this by proving that if there’s a T -time algorithm A such that

Pr
x,r∈{0,1}n

[A(f ′(x, r)) = h(x, r)] ≥ 1
2

+ ε

Then there is an algorithm A′ with running time polynomial in T and n such that

Pr
x∈{0,1}n

[A(f(x)) = x] ≥ ε′

Where ε′ is polynomial in ε and n.

Hint: Define “good” x’s to be x’s such that Prr←R{0,1}n [A(x, r) = h(x, r)] ≥ 1
2 + ε2

100 . Show
that there are not too few good x’s and use the lemma to give an algorithm A′ that inverts
f on these good x’s.

3. Prove the following “toy version” of Lemma 2:
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Lemma 2 (GL Lemma - probability 1 case). Let x ∈ {0, 1}n be some string. There exists
a polynomial in n time algorithm B that given black-box access to the function r 7→ 〈x, r〉
outputs x.

4. Prove the following “reduced version” of Lemma 2:

Lemma 3 (GL Lemma - probability 0.9 case). Let x ∈ {0, 1}n be some string and let A :
{0, 1}n → {0, 1} be a function such that for a random r ←R {0, 1}n, the probability that
A(r) = 〈x, r〉 is at least 0.9.

Then, there exists a polynomial in n time algorithm B that given black-box access to A outputs
x with probability at least 0.1.

Exercise 2 (20 points). Recall that an Abelian group G is a set of elements with an operation ?
that satisfies the following properties:

• Associativity: for all a, b, c ∈ G, (a ? b) ? c = a ? (b ? c).

• Commutativity: for all a, b ∈ G , a ? b = b ? a

• Identity: there exists an element e ∈ G such that for all a ∈ G, a ? e = e ? a = a. (We’ll often
denote the identity element by 1)

• Inverse: for every a ∈ G, there exists an element a′ such that a ? a′ = a′ ? a = e where e is an
identity element. (We’ll often denote a′ by a−1.)

Prove that for every n, the set of numbers x < n with gcd(x, n) = 1 with the operation
a ? b = a · b (mod n) is an Abelian group. (You can take for granted properties of normal (non-
modulu) multiplication such as associativity and commutativity.)

We denote this group by Z∗n and denote its size by φ(n). Note that clearly for every prime p,
φ(p) = p− 1.

Exercise 3 (15 points). Let G be an Abelian group of finite size n, and let a ∈ G. Prove that
there exists a number k such that ak = 1 (where ak = a ? a ? · · · ? a︸ ︷︷ ︸

k times

). Hint: As a first step, show

that there must be numbers ` < j such that a` = aj .
The smallest such k is called the order of a and it turns out that it’s always the case that k|n

and thus it’s always the case that an = 1.

Exercise 4 (20 points). Let G be an Abelian group with an operation ? and let G′ be the subset
of G where y ∈ G′ if and only if y = x2 for some x ∈ G. Prove that G′ with the operation ? is also
an Abelian group.

We note that G′ is called the subgroup of quadratic residues of G.

Exercise 5 (15 points). Let G be an Abelian group. G is called cyclic if there is an element g ∈ G
such that for every a ∈ G there is an integer k such that a = gk (and thus G is simply the set
{1 = g0, g = g1, g2, . . . , gn−1}.

Prove that for every cyclic group G of size n for an even number n, the set of quadratic residues
of G is exactly the set {g2k | k = 0, 1, 2, . . . , n/2− 1}.
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