
Handout 3: Computational Indistinguishability

Boaz Barak

Exercises due Tuesday October 11th, 2005 1:30pm
Total of 120 points (not including additional extra credit question of 20 points).

Recall that X and Y are (T, ε)-computationally indistinguishable, denoted by X ≈T,ε Y if for
every T -sized Boolean circuit C, |PrX [C(X) = 1]− PrY [C(Y) = 1]| ≤ ε

Exercise 1 (15 points). Prove that computational indistinguishability is preserved under multiple
independent samples. That is, suppose that X, Y,X ′, Y ′ are four independent distributions over
{0, 1}n and that X ≈T,ε X ′ and Y ≈T,ε Y ′ (for T > 100n). Let ◦ denote the concatenation operator
(that is for two strings x, y x ◦ y is the concatenation of x and y). Then, X ◦ Y ≈T/5,5ε X ′ ◦ Y ′

Hint: Find a suitable intermediate distribution and then use the transitivity / triangle inequality
property of computational indistinguishable.

Exercise 2 (15 points). Prove the existence of a (not necessarily efficiently computable) pseudo-
random generator. That is, prove that for every (sufficiently large) n, there exist a (2n/10, 2−n/10)-
pseudorandom generator g : {0, 1}n → {0, 1}2n/20

. See footnote for hint1

Is the output of your function (i.e., g(Un)) also statistically close to the uniform distribution on
2n/20 bits?

Exercise 3 (15 points). The RSA SecurID card (see Figure 1) is a credit-card sized device that
displays 6 digits that change every minute. The idea is that when you log into your account
remotely (say when you want to log into your UNIX account in Princeton from an Internet Cafe)
then you have to type the numbers that appear in the card in addition to your PIN or password.

1. What is the security advantage of such a card over traditional password? That is, what sort
of attack can this card resist which cannot be resisted using a standard password mechanism.
(Assume that it’s possible for users to remember a 6-digits PIN or a password with similar
security.)

2. Describe how you would implement such a scheme using pseudorandom functions.

Assume that the PRF family takes a seed of size n, and that the number of possible devices
is m (for m < 2n). How many bits of storage does your implementation use at the server and
each of the devices? (there is an implementation that uses at most O(n) bits).

3. Try to define what it means that such a scheme is secure and sketch a proof that your
construction satisfies it (you don’t have to formally define and prove if you don’t want to —
you can use English but try to be precise). Say how the security depends on n - the number
of bits that the device stores in memory (where its running time is polynomial in n) and on
k - the number of digits that we display to the user.

Exercise 4 (15 points). Recall that in class we gave a construction of a probabilistic CPA-secure
encryption scheme (i.e., the function E used extra randomness in computing the encryption).

1Hint: Show that a random function g(·) will satisfy this property with high probability. Do this by using the Chernoff bound (see first

handout) to bound the probability of g(·) failing with respect to a fixed 2n/10-sized circuit C (that is, consider the experiment where first C is
fixed and then g is chosen at random). Since the probability that g(·) is not a PRG — i.e. that it fails for some circuit (that can depend on the
choice of g(·)) — is the union of these bad events with respect to all possible circuits, you can use the union bound to bound it.

1

Figure 1: RSA SecurID Device.

1. Show that there is no deterministic and stateless CPA-secure encryption scheme.

2. Give a construction for a deterministic stateful CPA-secure encryption scheme. (Note that
CPA security implies in particular that the total number of messages is longer than the key
length.) A stateful deterministic encryption scheme is often called a stream cipher.

Exercise 5 (15 points). In these two questions you’ll show that if we have a pseudorandom function
family with particular input and output sizes, we can easily obtain a family that handles larger
inputs and outputs. (It’s easy to handle smaller outputs and inputs by truncation and padding.)

1. (Changing PRFs output size) Prove that if there exists a collection {fs} of pseudorandom
functions with fs : {0, 1}|s| → {0, 1} (i.e., one-bit output) then there exists a collection {f ′s}
with f ′s : {0, 1}|s| → {0, 1}|s|. See footnote for hint.2

2. (Changing PRFs input size) Prove that if there exists a collection {fs} of pseudorandom
functions with fs : {0, 1}|s| → {0, 1}|s| then there exists a collection {f ′s} with f ′s : {0, 1}∗ →
{0, 1}|s| (i.e., f ′s for a random s ∈ {0, 1}n is indistinguishable from a random function from
{0, 1}∗ to {0, 1}n. See footnote for hint3

Additional Exercises.

Exercise 6 (15 points). Recall that we defined a function T : N → N to be super-polynomial if
T (n) = nω(1) or in other words, for every constant c > 0 there exists N > 0 such that for every
n > N , T (n) > cnc.4

2Hint: First come up with a pseudorandom family with output longer than 1 but shorter than |s|. For example, if s ∈ {0, 1}n2
then the

output can be n. Then show that existence of PRF implies existence of pseudorandom generators and use that to expand your output.
3Hint: (This is definitely not the only approach to do this.) First note that such a PRF family implies immediately a family where

fs : {0, 1}|s| → {0, 1}|s|/2. Then try to use this to get a function f ′
s that works only for inputs whose size is a multiple of |s|/2. Then try to get

a function that works for every finite length string.
4Reminder of O notations: (We don’t need all of these but it’s good to know.) Let f, g : N → N be two

functions. We say that f(n) = O(g(n)) (or sometimes just f = O(g)) if there is a constant c > 0 and a number N
such that for every n > N , f(n) ≤ c · g(n). We say that f(n) = Ω(g(n)) if g(n) = O(f(n)) or equivalently, there’s a
constant c > 0 such that for every large enough n, f(n) ≥ c ·g(n). We say that f(n) = Θ(g(n)) if f(n) = O(g(n)) and
f(n) = Ω(g(n)). We say that f(n) = o(g(n)) if f(n) = O(g(n)) but f(n) 6= Ω(g(n)). In other words f(n) = o(g(n))
if for every constant c > 0 there’s an N such that for every n > N , f(n) < c · g(n). We say that f(n) = ω(g(n)) if
g(n) = o(f(n)). That is, for every c > 0 if n is large enough then f(n) > c · g(n).

2

1. For each the following functions say (no need to prove) whether it is super-polynomial or not.

(a) f1(n) = 2
√

n.

(b) f2(n) = nlog n

(c) f3(n) = n log n.

(d)

f4(n) =

{
2n n even
n2 n odd

2. Prove that for every super-polynomial function T : N → N the function T ′ : N → N defined
as follows T ′(n) = T (n1/3)1/3

n3 (with all values rounded to integers if they are not integers) is
also super-polynomial.

Pseudorandom permutations. Recall that we define a collection of permutations {pk}k∈{0,1}∗

where for k ∈ {0, 1}n, pk is a permutation over {0, 1}m(n) to be a pseudorandom-permutation
collection if it satisfies:5

• (Efficient computation) The functions (k, x) 7→ pk(x) and (k, y) 7→ p−1
k (y) are efficiently

computable (i.e., in polynomial time).

• (Pseudorandomness) There are super polynomial functions T, ε such that for every T (n) time
adversary A,∣∣∣∣∣ Pr

k←R{0,1}n

[
Apk(·),p−1

k (·)(1m) = 1
]
− Pr

P←R{0,1}m1-1→{0,1}m

[
AP (·),P−1(·)(1m) = 1

]∣∣∣∣∣ < ε(n)

(The notation Af,g means that the adversary is given oracle access to the functions f(·) , g(·)
which naturally it can query for at most T times. If an event happens with probability at
most 1/nω(1) then we say it happens with negligible probability.)

Exercise 7 (15 points). Let {pk}k∈{0,1}∗ be a pseudorandom permutation collection, where for
k ∈ {0, 1}n, pk is a permutation over {0, 1}m.

1. Consider the following encryption scheme (E,D): Ek(x) = pk(x) , Dk(y) = p−1
k (y). Prove that

this scheme is not a CPA-secure encryption.

2. Consider the following scheme (E,D) that encrypts m/2-bit messages in the following way: on
input x ∈ {0, 1}m/2, Ek chooses r ←R {0, 1}m/2 and outputs pk(x, r) (where comma denotes
concatenation), on input y ∈ {0, 1}m/2, Dk computes (x, r) = p−1

k (y) and outputs x. Prove
that (E,D) is a CPA-secure encryption scheme.

Hint: You can prove first that this scheme satisfies the weaker notion of multiple message
security. That is, for every polynomial p = p(n) and x1, . . . , xp, x

′
1, . . . , x

′
p ∈ {0, 1}m/2 adver-

saries the two sequences of random variables 〈EncK(x1), . . . ,EK(xp)〉 and 〈EK(x′1), . . . ,EK(x′p)〉
are computationally indistinguishable (where K and K ′ are two independent random variables
distributed uniformly over {0, 1}n).

5We assume that m and n are polynomially related. That is, n1/c < m(n) < nc for some constant c.

3

Exercise 8 (15 points). The CBC construction is often used to get an encryption for larger
message size. If p : {0, 1}m → {0, 1}m is a permutation, then CBC`〈p〉 is a permutation from
{0, 1}`·m to {0, 1}`·m defined in the following way: for x1, . . . , x` ∈ {0, 1}m, let y0 = 0n and define
yi = p(yi−1 ⊕ xi). Then, CBC`〈p〉(x1, . . . , x`) = (y1, . . . , y`).6 Note that the inverse of CBC`〈p〉 can
be computed in a similar way using the inverse of p(·).

Let {pk} be a pseudorandom permutation collection. Determine the CPA-security of the fol-
lowing two encryption schemes which are based on the CBC construction. That is, for each scheme
either prove that it is CPA-secure or give an attack showing that it is not. For simplicity, we
consider only the 3-block variant of the scheme (i.e. ` = 3).

1. (Padding in the end) Given pk : {0, 1}m → {0, 1}m and a message x = x1, x2 ∈ {0, 1}2m, Ek

chooses r ←R {0, 1}m and outputs CBC3〈pk〉(x1, x2, r). Decrypting done in the obvious way.

2. (Padding in the start) Given pk : {0, 1}m → {0, 1}m and a message x = x1, x2 ∈ {0, 1}2m, Ek

chooses r ←R {0, 1}m and outputs CBC3〈pk〉(r, x1, x2). Decrypting done in the obvious way.

Exercise 9 (Extra credit question — do only if you have energy and time — 20 points.). Suppose
that we designed a cryptographic chip implementing a pseudorandom permutation and wanted to
insert a hidden “back door” into it. More formally, we want to construct a collection {Pkmaster,k} that
has two keys: the “normal” key k and a master key kmaster. We will choose kmaster at random and know
it, and give to our unsuspecting clients two black-boxes Fkmaster(·, ·) and Bkmaster(·, ·) (for forward and
backward) that allow the client to specify k and compute Pkmaster,k forwards and backwards (i.e.,
Fkmaster(k, x) = Pkmaster,k(x) and Bkmaster(k, y) = P−1

kmaster,k
(y)).7 To anyone not knowing kmaster this

should behave like a normal pseudorandom permutation, but we should be able to break it.
That is, on the one hand if kmaster and k are chosen at random then access to the algorithms

Fkmaster(k, ·) and Bkmaster(k, ·) is indistinguishable from access to a random permutation and its in-
verse.

On the other hand, we’d like to be able to break the scheme and recover the client’s key k using
the master key kmaster. This naturally leads to the following questions:

1. (Insecurity for chosen inputs) Show a construction for such a scheme where there exists a
polynomial-time algorithm A that if kmaster and k are chosen at random and A is given kmaster

as input and access to a black box computing Pkmaster,k then it can recover k with probability
at least 0.9.

2. (Insecurity for known inputs)8 Show a construction for such a scheme where there exists a
polynomial-time algorithm A and a polynomial q = q(n) such that if kmaster and k are chosen
at random, and x1, . . . , xq are also chosen uniformly and independently at random, and A is
given kmaster and the sequence of pairs 〈x1, Pkmaster,k(x1)〉, . . ., 〈xq, Pkmaster,k(xq)〉 as input, then
A outputs k with probability at least 0.9.

6Often a different public value instead of 0m is chosen for y0 although this does not make a lot of difference for
security. This value is called IV or initialization vector.

7Actually, we can allow a slight relaxation: Pkmaster,k does not necessarily have to be a permutation as long as
without knowledge of kmaster it is not possible to find an x on which the inversion algorithm fails. That is, for some
x’s it may be Bkmaster(k, Fkmaster(k, x)) 6= x but these inputs should be hard to find by the client.

8Solving this took me a bit of time, a slightly cumbersome construction, and also required me to use the relaxation
that Pkmaster,k may not be completely a permutation (but rather for a random kmaster, polynomial algorithms can’t
find inputs k, x on which Bkmaster(Fkmaster(k, x)) 6= x with non-negligible probability).

4

