
1

Algorithms and Data Structures
Princeton University
Fall 2005

Kevin Wayne

2

Overview

What is COS 226?

! Intermediate-level survey course.

! Programming and problem solving with applications.

! Algorithm: method for solving a problem.

! Data structure: method to store information.

Topic

sorting

searching

graphs

Data Structures and Algorithms

quicksort, mergesort, heapsort, radix sorts

hash table, BST, red-black tree, B-tree

DFS, Prim, Kruskal, Dijkstra, Ford-Fulkerson

strings KMP, Rabin-Karp, TST, Huffman, LZW

geometry Graham scan, k-d tree, Voronoi diagram

data types stack, queue, list, union-find, priority queue

A misperception: algiros [painful] + arithmos [number].

3

Impact of Great Algorithms

Internet. Packet routing, Google, Akamai.

Biology. Human genome project, protein folding.

Computers. Circuit layout, file system, compilers.

Secure communications. Cell phones, e-commerce.

Computer graphics. Hollywood movies, video games.

Multimedia. CD player, DVD, MP3, JPG, DivX, HDTV.

Transportation. Airline crew scheduling, map routing.

Physics. N-body simulation, particle collision simulation.

Information processing. Database search, data compression.

. . .

"For me, great algorithms are the poetry of computation.

Just like verse, they can be terse, allusive, dense, and

even mysterious. But once unlocked, they cast a brilliant

new light on some aspect of computing." - Francis Sullivan

4

Why Study Algorithms?

Using a computer?

! Want it to go faster? Process more data?

! Want it to do something that would otherwise be impossible?

Algorithms as a field of study.

! Old enough that basics are known.

! New enough that new discoveries arise.

! Burgeoning application areas.

! Philosophical implications.

5

The Usual Suspects

Lectures. Kevin Wayne (Kevin)

! MW 11-12:20, Bowen 222.

Precepts. Harlan Yu (Harlan), Keith Morley (Keith)

! T 12:30, Friend 110.

! T 3:30, Friend 111.

! Clarify programming assignments, exercises, lecture material.

! First precept meets 9/20.

6

Coursework and Grading

Regular programming assignments: 45%

! Due 11:59pm, starting 9/26.

! More details next lecture.

Weekly written exercises: 15%

! Due at beginning of Thursday lecture, starting 9/22.

Exams:

! Closed book with cheatsheet.

! Midterm. 15%

! Final. 25%

Staff discretion. Adjust borderline cases.

7

Course Materials

Course web page. http://www.princeton.edu/~cos226

! Syllabus.

! Exercises.

! Lecture slides.

! Programming assignments.

Algorithms in Java, 3rd edition.

! Parts 1-4. (sorting, searching)

! Part 5. (graph algorithms)

Algorithms in C, 2nd edition.

! Strings and geometry handouts.

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Union Find

Reference: Chapter 1, Algorithms in Java, 3rd Edition, Robert Sedgewick.

22

Network Connectivity

 in out evidence

 3 4 3 4

 4 9 4 9

 8 0 8 0

 2 3 2 3

 5 6 5 6

 2 9 (2–3–4-9)

 5 9 5 9

 7 3 7 3

 4 8 4 8

 5 6 (5-6)

 0 2 (2–3-4–8-0)

 6 1 6 1

0 7

2 3

8

4

6 5 9

1

23

An Example Problem: Network Connectivity

Network connectivity.

! Nodes at grid points.

! Add connections between pairs of nodes.

! Is there a path from node A to node B?

A

B

24

Union-Find Abstraction

What are critical operations we need to support?

! Objects.

! Disjoint sets of objects.

! Find: are objects 2 and 9 in the same set?

! Union: merge sets containing 3 and 8.

0 1 2-3-9 5-6 7 4-8

0 1 2-3-4-8-9 7 8-4

0 1 2-3-9 5-6 7 4-8

add a connection between
two grid points

subsets of connected grid points

are two grid points connected?

0 1 2 3 4 5 6 7 8 9 grid points

25

Union-Find Abstraction

What are critical operations we need to support?

! Objects.

! Disjoint sets of objects.

! Find: are two objects in the same set?

! Union: replace sets containing two items by their union.

Goal. Design efficient data structure for union and find.

! Number of operations M can be huge.

! Number of objects N can be huge.

26

Objects

Applications involve manipulating objects of all types.

! Variable name aliases.

! Pixels in a digital photo.

! Computers in a network.

! Web pages on the Internet.

! Transistors in a computer chip.

! Metallic sites in a composite system.

When programming, convenient to name them 0 to N-1.

! Details not relevant to union-find.

! Integers allow quick-access to object-related info (array indices).

28

Quick-Find [eager approach]

Data structure.

! Integer array id[] of size N.

! Interpretation: p and q are connected if they have the same id.

Find. Check if p and q have the same id.

Union. To merge components containing p and q,

change all entries with id[p] to id[q].

 i 0 1 2 3 4 5 6 7 8 9

id[i] 0 1 9 9 9 6 6 7 8 9

5 and 6 are connected
2, 3, 4, and 9 are connected

union of 3 and 6
2, 3, 4, 5, 6, and 9 are connected

 i 0 1 2 3 4 5 6 7 8 9

id[i] 0 1 6 6 6 6 6 7 8 6

id[3] = 9; id[6] = 6

3 and 6 not connected

many values can change

29

Quick-Find

3-4 0 1 2 4 4 5 6 7 8 9

4-9 0 1 2 9 9 5 6 7 8 9

8-0 0 1 2 9 9 5 6 7 0 9

2-3 0 1 9 9 9 5 6 7 0 9

5-6 0 1 9 9 9 6 6 7 0 9

5-9 0 1 9 9 9 9 9 7 0 9

7-3 0 1 9 9 9 9 9 9 0 9

4-8 0 1 0 0 0 0 0 0 0 0

6-1 1 1 1 1 1 1 1 1 1 1

30

Quick-Find: Java Implementation

1 operation

N operations

set id of each
object to itself

public class QuickFind {

 private int[] id;

 public QuickFind(int N) {

 id = new int[N];

 for (int i = 0; i < N; i++)

 id[i] = i;

 }

 public boolean find(int p, int q) {

 return id[p] == id[q];

 }

 public void unite(int p, int q) {

 int pid = id[p];

 for (int i = 0; i < id.length; i++)

 if (id[i] == pid) id[i] = id[q];

 }

}

31

Problem Size and Computation Time

Rough standard for 2000.

! 109 operations per second.

! 109 words of main memory.

! Touch all words in approximately 1 second. [unchanged since 1950!]

Ex. Huge problem for quick find.

! 1010 edges connecting 109 nodes.

! Quick-find might take 1020 operations. [10 ops per query]

! 3,000 years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

! New computer may be 10x as fast.

! But, has 10x as much memory so problem may be 10x bigger.

! With quadratic algorithm, takes 10x as long!

33

Quick-Union

Data structure.

! Integer array id[] of size N.

! Interpretation: id[x] is parent of x.

! Root of x is id[id[id[...id[x]...]]].

Find. Check if p and q have the same root.

Union. Set the id of q's root to the id of p's root.

keep going until it doesn't change

 i 0 1 2 3 4 5 6 7 8 9

id[i] 0 1 9 4 9 6 6 7 8 9

4

7

3

5

0 1 9 6 8

2

3's root is 9; 5's root is 6

3 and 5 are not connected

 i 0 1 2 3 4 5 6 7 8 9

id[i] 0 1 9 4 9 6 9 7 8 9

4

7

3 5

0 1 9

6

8

2

only one value changes
p q

34

Quick-Union

3-4 0 1 2 4 4 5 6 7 8 9

4-9 0 1 2 4 9 5 6 7 8 9

8-0 0 1 2 4 9 5 6 7 0 9

2-3 0 1 9 4 9 5 6 7 0 9

5-6 0 1 9 4 9 6 6 7 0 9

5-9 0 1 9 4 9 6 9 7 0 9

7-3 0 1 9 4 9 6 9 9 0 9

4-8 0 1 9 4 9 6 9 9 0 0

6-1 1 1 9 4 9 6 9 9 0 0

35

Quick-Union: Java Implementation

time proportional
to depth of p and q

time proportional
to depth of p and q

public class QuickUnion {

 private int[] id;

 public QuickUnion(int N) {

 id = new int[N];

 for (int i = 0; i < N; i++) id[i] = i;

 }

 private int root(int x) {

 while (x != id[x]) x = id[x];

 return x;

 }

 public boolean find(int p, int q) {

 return root(p) == root(q);

 }

 public void unite(int p, int q) {

 int i = root(p), j = root(q);

 if (i == j) return;

 id[i] = j;

 }

}

time proportional

to depth of x

36

Summary

Quick-find defect.

! Union too expensive.

! Trees are flat, but too hard to keep them flat.

Quick-union defect.

! Finding the root can be expensive.

! Trees can get tall.

Quick-find

Data Structure

N

Union

Quick-union 1 †

1

Find

N

† union of two root nodes

37

Weighted Quick-Union

Weighted quick-union.

! Modify quick-union to avoid tall trees.

! Keep track of size of each component.

! Balance by linking small tree below large one.

Ex: union of 5 and 3.

! Quick union: link 9 to 6.

! Weighted quick union: link 6 to 9.

4

7

3

5

0 1 9 6 8

2

p

q

4 211 1 1size

38

Weighted Quick-Union

3-4 0 1 2 3 3 5 6 7 8 9

4-9 0 1 2 3 3 5 6 7 8 3

8-0 8 1 2 3 3 5 6 7 8 3

2-3 8 1 3 3 3 5 6 7 8 3

5-6 8 1 3 3 3 5 5 7 8 3

5-9 8 1 3 3 3 3 5 7 8 3

7-3 8 1 3 3 3 3 5 3 8 3

4-8 8 1 3 3 3 3 5 3 3 3

6-1 8 3 3 3 3 3 5 3 3 3

39

Weighted Quick-Union: Java Implementation

Java implementation.

! Almost identical to quick-union.

! Maintain extra array sz[] to count number of elements in

the tree rooted at i.

Find. Identical to quick-union.

Union. Same as quick-union, but merge smaller tree into the larger

tree, and update the sz[] array.

if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }

else { id[j] = i; sz[i] += sz[j]; }

40

Weighted Quick-Union: Analysis

Analysis.

! Find: takes time proportional to depth of p and q.

! Union: takes constant time, given roots.

! Fact: depth is at most 1 + lg N. [needs proof]

Stop at guaranteed acceptable performance? No, can improve further.

Quick-find

Data Structure

N

Union

Quick-union 1 †

1

Find

N

Weighted QU lg N lg N

41

Path compression. Just after computing the root of x, set id of each

examined node to root(x).

Path Compression

0

1 23

54

6

7 8

9

1110

0

1 2

3 54

6 7

8 9

1110

root(9)

42

Weighted Quick-Union with Path Compression

Path compression.

! Standard implementation: add second loop to root to set the id of

each examined node to the root.

! Simpler one-pass variant: make each examined node point to its

grandparent.

In practice. No reason not to! Keeps tree almost completely flat.

public int root(int x) {

 while (x != id[x]) {

 id[x] = id[id[x]];

 x = id[x];

 }

 return x;

}

only one extra line of code !

43

Weighted Quick-Union with Path Compression

3-4 0 1 2 3 3 5 6 7 8 9

4-9 0 1 2 3 3 5 6 7 8 3

8-0 8 1 2 3 3 5 6 7 8 3

2-3 8 1 3 3 3 5 6 7 8 3

5-6 8 1 3 3 3 5 5 7 8 3

5-9 8 1 3 3 3 3 5 7 8 3

7-3 8 1 3 3 3 3 5 3 8 3

4-8 8 1 3 3 3 3 5 3 3 3

6-1 8 3 3 3 3 3 3 3 3 3

44

2

N

16

65536

265536

1

lg* N

3

4

5

4 2

Weighted Quick-Union with Path Compression

Theorem. A sequence of M union and find operations

on N elements takes O(N + M lg* N) time.

! Proof is very difficult.

! But the algorithm is still simple!

Remark. lg* N is a constant in this universe.

Linear algorithm?

! Cost within constant factor of reading in the data.

! Theory: WQUPC is not quite linear.

! Practice: WQUPC is linear.

45

Context

Ex. Huge practical problem.

! 1010 edges connecting 109 nodes.

! WQUPC reduces time from 3,000 years to 1 minute.

! Supercomputer wouldn't help much.

! Good algorithm makes solution possible.

Bottom line. WQUPC on cell phone beats QF on supercomputer!

Quick-find

Algorithm

Weighted QU

Path compression

M N

Time

N + M log N

N + M log N

Quick-union M N

Weighted + path 5 (M + N)
M union-find ops
on a set of N elements

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Applications

47

Other Applications

Union-find applications.

! Hex.

! Percolation.

! Connectivity.

! Image processing.

! Least common ancestor.

! Equivalence of finite state automata.

! Hinley-Milner polymorphic type inference.

! Kruskal's minimum spanning tree algorithm.

! Compiling equivalence statements in Fortran.

! Scheduling unit-time tasks to P processors so that each job

finishes between its release time and deadline.

48

Hex

Hex. [Piet Hein 1942, John Nash 1948, Parker Brothers 1962]

! Two players alternate in picking a cell in a hex grid.

! Black: make a black path from upper left to lower right.

! White: make a white path from lower left to upper right.

Goal. Algorithm to detect when a player has won.

Reference: http://mathworld.wolfram.com/GameofHex.html

49

Percolation phase-transition.

! Two parallel conducting bars (top and bottom).

! Electricity flows from a site to one of its 4 neighbors if both are

occupied by conductors.

! Suppose each site is randomly chosen to be a conductor or insulator

with probability p.

Percolation

0 0 0 0 0 0 0 0

2 3 4 0 6 0 8 9

14 15 0 0 0 0 20 21

14 14 28 29 30 31 32 33

14 39 40 1 42 43 32 45

50 1 52 1 54 55 56 57

1 1 1 1 1 1 1 1

0 0 0 0

10 11 12 0

22 23 24 0

34 35 36 0

46 1 1 49

58 1 1 1

1 1 1 1 insulator

top

bottom

50

Q. What is percolation threshold p* at which charge carriers can

percolate from top to bottom?

A. ~ 0.592746 for square lattices. [constant only known via simulation]

Percolation

0 0 0 0 0 0 0 0

2 3 4 0 6 0 8 9

14 15 0 0 0 0 20 21

14 14 28 29 30 31 32 33

14 39 40 1 42 43 32 45

50 1 52 1 54 55 56 57

1 1 1 1 1 1 1 1

0 0 0 0

10 11 12 0

22 23 24 0

34 35 36 0

46 1 1 49

58 1 1 1

1 1 1 1 insulator

top

bottom

51

Summary

Lessons.

! Simple algorithms can be very useful.

! Start with brute force approach.

– don't use for large problems

– can't use for huge problems

! Strive for worst-case performance guarantees.

! Identify fundamental abstractions: union-find.

! Apply to many domains.

might be nontrivial to analyze

