
Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Undirected Graphs

Reference: Chapter 17-18, Algorithms in Java, 3rd Edition, Robert Sedgewick.

2

Undirected Graphs

Graph. Set of objects with pairwise connections.

Why study graph algorithms?

! Interesting and broadly useful abstraction.

! Challenging branch of computer science and discrete math.

! Hundreds of graph algorithms known.

! Thousands of practical applications.

3

Graph Applications

communication

Graph

telephones, computers

Vertices Edges

fiber optic cables

circuits gates, registers, processors wires

mechanical joints rods, beams, springs

hydraulic reservoirs, pumping stations pipelines

financial stocks, currency transactions

transportation street intersections, airports highways, airway routes

social relationship people, actors friendships, movie casts

neural networks neurons synapses

protein networks proteins protein-protein interactions

chemical compounds molecules bonds

7

Graph Terminology

8

Some Graph Problems

Path. Is there a path between s to t?

Shortest path. What is the shortest path between two vertices?

Longest path. What is the longest path between two vertices?

Cycle. Is there a cycle in the graph?

Euler tour. Is there a cyclic path that uses each edge exactly once?

Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?

MST. What is the best way to connect all of the vertices?

Biconnectivity. Is there a vertex whose removal disconnects graph?

Planarity. Can you draw the graph in the plane with no crossing edges?

Isomorphism. Do two adjacency matrices represent the same graph?

9

Graph Representation

Vertex representation.

! This lecture: use integers between 0 and V-1.

! Real world: convert between names and integers with symbol table.

Other issues. Parallel edges, self-loops.

A

G

E

CB

F

D

0

6

4

21

5

3

index symbol table

10

Graph Interface

Graph G = new Graph(V, E);
System.out.println(G);
for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(v))
 // edge v-w

iterate through all edges (in each direction)

Return Type

Graph(int V)

Method Action

create empty graph

void insert(int v, int w) add edge v-w

Iterable<Integer> adj(int v) return iterator over neighbors of v

int V() return number of vertices

Graph(int V, int E) create random graph

String toString() return string representation

11

A-B
A-G
A-C
L-M
J-M
J-L
J-K
E-D
F-D
H-I
F-E
A-F
G-E

Set of Edge Representation

Set of edge representation. Store list of edges.

A

G

E

CB

F

D

H M

KJ

LI

12

Adjacency Matrix Representation

Adjacency matrix representation.

! Two-dimensional V ! V boolean array.

! Edge v-w in graph: adj[v][w] = adj[w][v] = true.

 A B C D E F G H I J K L M
 0 A 0 1 1 0 0 1 1 0 0 0 0 0 0
 1 B 1 0 0 0 0 1 1 0 0 0 0 0 0
 2 C 1 0 0 0 0 0 0 0 0 0 0 0 0
 3 D 0 0 0 0 1 1 0 0 0 0 0 0 0
 4 E 0 0 0 1 0 1 1 0 0 0 0 0 0
 5 F 1 1 0 1 1 0 0 0 0 0 0 0 0
 6 G 1 1 0 0 1 0 0 0 0 0 0 0 0
 7 H 0 0 0 0 0 0 0 0 1 0 0 0 0
 8 I 0 0 0 0 0 0 0 1 0 0 0 0 0
 9 J 0 0 0 0 0 0 0 0 0 0 1 1 1
10 K 0 0 0 0 0 0 0 0 0 1 0 0 0
11 L 0 0 0 0 0 0 0 0 0 1 0 0 1
12 M 0 0 0 0 0 0 0 0 0 1 0 1 0

A

G

E

CB

F

D

H M

KJ

LI

13

Adjacency Matrix Representation: Java Implementation

public class Graph {
 private int V; // number of vertices
 private boolean[][] adj; // adjacency matrix

 // empty graph with V vertices
 public Graph(int V) {
 this.V = V;
 this.adj = new boolean[V][V];
 }

 // insert edge v-w if it doesn't already exist
 public void insert(int v, int w) {
 adj[v][w] = true;
 adj[w][v] = true;
 }

 // return iterator for neighbors of v
 public Iterable<Integer> adj(int v) {
 return new AdjIterator(v);
 }
}

14

Adjacency Matrix Iterator

private class AdjIterator implements Iterator<Integer>,
 Iterable<Integer> {

 int v, w = 0;
 AdjIterator(int v) { this.v = v; }

 public boolean hasNext() {
 while (w < V) {
 if (adj[v][w]) return true;
 w++;
 }
 return false;
 }

 public int next() {
 if (hasNext()) return w++;
 else return -1;
 }
}

does v have another neighbor w?

return next neighbor w of v

15

Adjacency List Representation

Vertex indexed array of lists.

! Space proportional to number of edges.

! Two representations of each undirected edge.

A: F C B G

B: A

C: A

D: F E

E: G F D

F: A E D

G: E A

H: I

I: H

J: K L M

K: J

L: J M

M: J L

A

G

E

CB

F

D

H M

KJ

LI

16

Adjacency List Representation: Java Implementation

public class Graph {
 private int V; // # vertices
 private Sequence<Integer>[] adj; // adjacency lists

 public Graph(int V) {
 this.V = V;
 adj = new (Sequence<Integer>[]) Sequence[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Sequence<Integer>();
 }

 // insert v-w, parallel edges allowed
 public void insert(int v, int w) {
 adj[v].add(w);
 adj[w].add(v);
 }

 public Iterable<Integer> adj(int v) {
 return adj[v];
 }
}

17

Graph Representations

Graphs are abstract mathematical objects.

! ADT implementation requires specific representation.

! Efficiency depends on matching algorithms to representations.

Graphs in practice. [use adjacency list representation]

! Real world graphs are sparse.

! Bottleneck is iterating over edges incident to v.

Representation Space

Adjacency matrix "(V 2)

Adjacency list "(E + V)

Edge between
v and w?

"(1)

O(degree(v))

Enumerate edges
incident to v?

"(V)

"(degree(v))

List of edges "(E) O(E) "(E)

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Maze Exploration

19

Maze Exploration

Maze graphs.

! Vertex = intersections.

! Edge = passage.

Goal. Explore every passage in the maze.

20

Trémaux Maze Exploration

Trémaux maze exploration.

! Unroll a ball of string behind us.

! Mark each visited intersection by turning on a light.

! Mark each visited passage by opening a door.

History. Theseus entered labyrinth to kill the monstrous Minotaur;

Ariadne held ball of string.

21

22

Maze Exploration

23

Depth First Search

Goal. Find all vertices connected to s.

Depth first search. To visit a vertex v:

! Mark v as visited.

! Recursively visit all unmarked vertices w

adjacent to v.

Running time. O(E) since each edge

examined at most twice.

24

Typical client program.

! Create a Graph.

! Pass the Graph to a graph processing routine, e.g., DFSearcher.

! Query the graph processing routine for information.

! Design pattern: separate graph from graph algorithms.

Graph Processing Client

public static void main(String args[]) {
 int V = Integer.parseInt(args[0]);
 int E = Integer.parseInt(args[1]);
 int s = 0;
 Graph G = new Graph(V, E);
 DFSearcher dfs = new DFSearcher(G, s);
 for (int v = 0; v < G.V(); v++)
 if (dfs.isReachable(v))
 System.out.println(v);
}

find and print vertices reachable from s

25

Depth First Search

public class DFSearcher {
 private boolean[] marked;

 public DFSearcher(Graph G, int s) {
 marked = new boolean[G.V()];
 dfs(G, s);
 }

 // depth first search from v
 private void dfs(Graph G, int v) {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 }

 public boolean isReachable(int v) { return marked[v]; }

}

26

Reachability Application: Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire

blob of neighboring lime pixels to blue.

! Vertex: pixel.

! Edge: two neighboring lime pixels.

! Blob: all pixels reachable from chosen lime pixel.
recolor lime green blob to blue

28

Paths

Path. Is there a path from s to t? If so, find one.

30

Paths

Path. Is there a path from s to t? If so, find one.

UF advantage. Can intermix query and edge insertion.

DFS advantage. Can recover path itself in same running time.

Method Preprocess Time

Union Find O(E log* V) †

DFS "(E + V)

Query Time

O(log* V) †

"(1)

Space

"(V)

"(V + E)

† amortized

31

Keep Track of Path

DFS tree. Upon visiting a vertex v for

the first time, remember from where

you came pred[v].

Retrace path. To find path between

s and v, follow pred values back from v.

32

Find Path

public class DFSearcher {
 // ininitalize pred[v] to -1 for all v

 private void dfs(Graph G, int v) {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) {
 pred[w] = v;
 dfs(G, w);
 }
 }

 // return path from s to v
 public Iterable<Integer> path(int v) {
 LinkedList<Integer> list = new LinkedList<Integer>();
 while (v != -1 && marked[v]) {
 list.addFirst(v);
 v = prev[v];
 }
 return list;
 }
}

33

DFS Summary

Enables direct solution of simple graph problems.

! Find path between s to t.

! Connected components.

! Euler tour.

! Cycle detection.

! Bipartiteness checking.

Basis for solving more difficulty graph problems.

! Biconnected components.

! Planarity testing.

34

Breadth First Search

Depth-first search. Put unvisited vertices on a stack.

Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to t that uses fewest number of edges.

Breadth first search.

! Initialize dist[v] = #, dist[s] = 0.

! When considering edge v-w:

– if w is marked, then ignore

– otherwise set dist[w] = dist[v] + 1 and add w to the queue

Property. BFS examines vertices in increasing distance from s.

35

Breadth First Search

public class BFSearcher {
 private static int INFINITY = Integer.MAX_VALUE;

 private int[] dist;

 public BFSearcher(Graph G, int s) {
 dist = new int[G.V()];
 for (int v = 0; v < G.V(); v++) dist[v] = INFINITY;
 dist[s] = 0;
 bfs(G, s);
 }

 public int distance(int v) { return dist[v]; }
 private void bfs(Graph G, int s) { // NEXT SLIDE }
}

36

Breadth First Search

// breadth-first search from s
private void bfs(Graph G, int s) {
 Queue<Integer> q = new Queue<Integer>();
 q.enqueue(s);
 while (!q.isEmpty()) {
 int v = q.dequeue();
 for (int w : G.adj(v)) {
 if (dist[w] == INFINITY) {
 q.enqueue(w);
 dist[w] = dist[v] + 1;
 }
 }
 }
}

37

BFS Application

BFS applications.

! Facebook.

! Kevin Bacon numbers.

! Fewest number of hops in a communication network.

ARPANET

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Connected Components

39

Connectivity Queries

Def. Vertices v and w are connected if there is a path between them.

Property. Symmetric and transitive.

Goal. Preprocess graph to answer queries: is v connected to w?

Brute force. Run DFS from each vertex v: quadratic time and space.

Connected component. Maximal set of mutually connected vertices.

H

A

K

EL

F

D

G

M

CJ

B

I

Vertex Component
 A 0
 B 1
 C 1
 D 0
 E 0
 F 0
 G 2
 H 0
 I 2
 J 1
 K 0
 L 0
 M 1

40

Connected Components

Depth-first search.

! To traverse a graph G:

– initialize all vertices as unmarked

– visit each unmarked vertex v

! To visit a vertex v:

– mark v as visited

– recursively visit all unmarked vertices w adjacent to v

Result.

! Preprocessing: O(V + E) time, O(V) extra space.

! Connectivity query: O(1) time.

41

Depth First Search: Connected Components

public class CCFinder {
 private int components;
 private int[] cc;

 public CCFinder(Graph G) {
 this.cc = new int[G.V()];
 for (int v = 0; v < G.V(); v++) cc[v] = -1;
 for (int v = 0; v < G.V(); v++)
 if (cc[v] == -1) { dfs(G, v); components++; }
 }

 // depth first search from v
 private void dfs(Graph G, int v) {
 cc[v] = components;
 for (int w : G.adj(v))
 if (cc[w] == -1) dfs(G, w);
 }

 public int connected(int v, int w) { return cc[v] == cc[w]; }

} are v and w in same connected component?

unmarked

42

Connected Components

63 components

43

Connected Components Application: Image Processing

Goal. Read in a 2D color image and find regions of connected pixels

that have the same color.

original labeled

44

Connected Components Application: Image Processing

Goal. Read in a 2D color image and find regions of connected pixels

that have the same color.

Efficient algorithm.

! Connect each pixel to neighboring pixel if same color.

! Find connected components in resulting graph.

0 1 1 1 1 1 6 6

0 0 0 1 6 6 6 8

3 0 0 1 6 6 4 8

3 0 0 1 1 6 2 11

10 10 10 10 1 1 2 11

7 7 2 2 2 2 2 11

7 7 5 5 5 2 2 11

8 9 9 11

8 11 9 11

11 11 11 11

11 11 11 11

11 11 11 11

11 11 11 11

11 11 11 11

45

Connected Components Application: Particle Detection

Particle detection. Given grayscale image of particles, identify "blobs."

! Vertex: pixel.

! Edge: between two adjacent pixels with grayscale value $ 70.

! Blob: connected component of 20-30 pixels.

Particle tracking. Track moving particles over time.

black = 0
white = 255

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Euler Tour

47

The Seven Bridges of Königsberg. [Leonhard Euler 1736]

Euler tour. Is there a cyclic path that uses each edge exactly once?

Answer. Yes iff connected and all vertices have even degree.

"..... in Königsberg in Prussia, there is an island A, called the Kneiphof;

the river which surrounds it is divided into two branches ... and these

branches are crossed by seven bridges. Concerning these bridges, it was

asked whether anyone could arrange a route in such a way that he could

cross each bridge once and only once....."

Bridges of Königsberg
earliest application of
graph theory or topology

48

Euler Tour

How to find an Euler tour. [assuming graph is Eulerian]

! Start at vertex v and follow unused edges until you return to v.

(always possible since all vertices have even degree)

! Find additional cyclic paths using remaining edges and splice back

into original cyclic path.

0

6

4

21

5

3

0

6

4

21

5

3

0

6

4

21

5

3

0 - 6 - 4 - 2 - 3 - 4 - 5 - 0 - 2 - 1 - 0

49

Euler Tour: Implementation

Q. How to efficiently keep track of unused edges?

A. Quick + dirty: delete edge from graph once you use it.

Q. How to efficiently find and splice additional cyclic paths?

A. Push each visited vertex onto a stack.

0

6

4

21

5

3

0

6

4

21

5

3

0

6

4

21

5

3

0 - 6 - 4 - 2 - 3 - 4 - 5 - 0 - 2 - 1 - 0

50

Two Related Problems

Euler tour. Is there a cyclic path that uses each edge exactly once?

Linear time solution. DFS.

Hamilton tour. Is there a cycle that uses each vertex exactly once?

Polynomial time solution??? NP-complete.

