Reductions

Robert Sedgewick and Kevin Worne - Copright $\odot 2005$ - http//wwurrincetonEDU/~cos226

Reduction

Def. Problem X reduces to problem Y if given a subroutine for Y ,
can solve X. ${ }_{\text {don't confuse with reduces from }}$

- Cost of solving $X=$ cost of solving $Y+$ cost of reduction.
- Ex: $X=$ closest pair, $Y=$ Voronoi

Consequences.

- Classify problems: establish relative difficulty between two problems.

Design algorithms: given algorithm for Y, can also solve X.

- Establish intractability: if X is hard, then so is Y.

Desiderata. Classify problems according to their computational requirements.

Frustrating news. Huge number of fundamental problems have defied classification for decades.

Desiderata'. Suppose we could (couldn' \dagger) solve problem X efficiently. What else could (couldn' \dagger) we solve efficiently?

Linear Time Reductions

Def. Problem X linear reduces to problem Y if X can be solved with:

- Linear number of standard computational steps.
- One call to subroutine for Y.
- Notation: $X \leq \perp$.

Some familiar examples.

- Dedup $\leq_{\llcorner }$sorting.
- Median $\leq_{\llcorner }$sorting.
- Convex hull $\leq _$Voronoi.
- Closest pair $\leq_{\llcorner }$Voronoi.
- Arbitrage $\leq _$negative cycle detection
- Brewer's problem \leq L linear programming

Shortest Paths

Claim. Undirected shortest path (with nonnegative weights) linearly reduces to directed shortest path.

Pf. Replace each undirected edge by two directed edges.

Def. Problem X linear reduces to problem Y if X can be solved with:

- Linear number of standard computational steps.
- One call to subroutine for Y.

Consequences.

- Design algorithms: given algorithm for Y, can also solve X.
- Establish intractability: if X is hard, then so is Y.
- Classify problems: establish relative difficulty between two problems.

Caveat. Reduction invalid in networks with negative weights (even if no negative cycles).

$$
\text { (s) } 7-1+\text { (t) }
$$

Remark. Can still solve shortest path problem in undirected graphs if no negative cycles, but need more sophisticated techniques.
\checkmark
reduces to weighted non-bipartite matching (!)

Sorting. Given N distinct integers, rearrange them in ascending order.
Convex hull. Given N points in the plane, identify the extreme points on the convex hull (in counter-clockwise order).

Claim. Convex hull linear reduces to sorting
Pf. Graham scan algorithm.

Sorting and Convex Hull

Sorting. Given N distinct integers, rearrange them in ascending order.

Convex hull. Given N points in the plane, identify the extreme points on the convex hull (in counter-clockwise order).

Claim. Sorting linear reduces to convex hull.

Def. Problem X linear reduces to problem Y if X can be solved with:

- Linear number of standard computational steps.
- One call to subroutine for y.

Consequences.

- Design algorithms: given algorithm for Y, can also solve X
- Establish intractability: if X is hard, then so is Y.
- Classify problems: establish relative difficulty between two problems.

Sorting Linear Reduces to Convex Hull

Sorting instance.
$x_{1}, x_{2}, \ldots, x_{N}$
Convex hull instance.
$\left(x_{1}, x_{1}^{2}\right),\left(x_{2}, x_{2}^{2}\right), \ldots,\left(x_{N}, x_{N}^{2}\right)$

[^0]
3-SUM Reduces to 3-COLLINEAR

Theorem. In quadratic decision tree model of computation, sorting N integers requires $\Omega(N \log N)$ steps.

$$
\begin{aligned}
& \text { allow tests of the form } x_{i}<x_{j} \text { or } \\
& \left(x_{i}-x_{j}\right)\left(y_{k}-y_{i}\right)-\left(y_{i}-y_{i}\right)\left(x_{j}-x_{j}\right)<0
\end{aligned}
$$

we just proved this

\downarrow
Claim. Sorting linear reduces to convex hull.

Corollary. Any ccw-based convex hull algorithm requires $\Omega(N \log N)$ steps.

3-SUM Reduces to 3-COLLINEAR

Claim. If $a, b, a n d c$ are distinct then $a+b+c=0$ if and only if $\left(a, a^{3}\right),\left(b, b^{3}\right),\left(c, c^{3}\right)$ are collinear.

Pf. Three points $\left(a, a^{3}\right),\left(b, b^{3}\right),\left(c, c^{3}\right)$ are collinear iff:

$$
\begin{aligned}
\frac{a^{3}-b^{3}}{a-b}=\frac{b^{3}-c^{3}}{b-c} & \Leftrightarrow \\
& \Leftrightarrow \frac{(a-b)\left(a^{2}+a b+b^{2}\right)}{a-b}=\frac{(b-c)\left(b^{2}+b c+c^{2}\right)}{b-c} \\
& \Leftrightarrow \quad c^{2}+b c-a^{2}-a b=0 \\
& \Leftrightarrow \quad(c-a)(c+a+b)=0 \\
& c=a \text { or } a+b+c=0
\end{aligned}
$$

3-SUM. Given N distinct integers, are there 3 that sum to 0 ?
3-COLLINEAR. Given N distinct points in the plane, are there 3 points that all lie on the same line?

Claim. $3-S U M \leq _3-C O L L I N E A R$.
Pf.

- 3-SUM instance: $\quad x_{1}, x_{2}, \ldots, x_{N}$
- 3-COLLINEAR instance: $\left(x_{1}, x_{1}^{3}\right),\left(x_{2}, x_{2}^{3}\right), \ldots,\left(x_{N}, x_{N}^{3}\right)$

3-SUM and 3-COLLINEAR

Conjecture. Any algorithm for 3-SUM requires $\Omega\left(\mathrm{N}^{2}\right)$ time.
we just proved this
$\stackrel{\downarrow}{\ell}$
Claim. $3-S U M \leq$ 3-COLLINEAR.

Corollary. If no sub-quadratic algorithm for 3-SUM, then no sub-quadratic algorithm for 3-COLLINEAR.

Def. Problem X linear reduces to problem Y if X can be solved with:

- Linear number of standard computational steps.
- One call to subroutine for y.

Consequences

- Design algorithms: given algorithm for Y, can also solve X.
- Establish intractability: if X is hard, then so is Y.
- Classify problems: establish relative difficulty between two problems.

PRIME. Given an integer \times (represented in decimal), is \times prime? COMPOSITE. Given an integer x, does x have a nontrivial factor?

Claim. PRIME $\leq_{\llcorner }$COMPOSITE.

```
```

public static boolean isPrime(int x) {

```
```

public static boolean isPrime(int x) {
if (isComposite(x)) return false
if (isComposite(x)) return false
else return true
else return true
}

```
```

}

```
```

PRIME. Given an integer \times (represented in decimal), is \times prime? COMPOSITE. Given an integer x, does x have a nontrivial factor?

Claim. COMPOSITE $\leq_{\text {L PRIME. }}$

```
public static boolean isComposite(int x)
    if (isPrime(x)) return false
    else (x) return true;
}
```

Caveat.

- System designer specs the interfaces for project.
- One programmer might implement isComposite using isPrime
- Another programmer might implement isPrime using isComposite
- Be careful to avoid infinite reduction loops in practice.

```
public static boolean isComposite(int x)
    if (isPrime(x)) return false
    else (x)
}
```

```
public static boolean isPrime(int x) {
    f (isComposite(x)) return false
    if (isComposite(x)) return false;
}
```


Polynomial-Time Reductions

Robert Sedgewick and Kevin Wayne • Copyright © $2005 \cdot$ http://www.Princeton.EDU/~cos226

Poly-Time Reductions

Goal. Classify and separate problems according to relative difficulty.

- Those that can be solved in polynomial time.
- Those that (probably) require exponential time.

Establish tractability. If $\mathrm{X} \leq p_{\mathrm{p}} \mathrm{Y}$ and Y can be solved in poly-time, then X can be solved in poly-time.

Establish intractability. If $Y \leq{ }_{p} X$ and Y cannot be solved in poly-time then X cannot be solved in poly-time.

Useful property. If $X \leq p Y$ and $Y \leq p Z$ then $X \leq p Z$.

Def. Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- One call to subroutine for Y.

Notation. $\mathrm{X} \leq \mathrm{p} \mathrm{Y}$.

Ex. Assignment problem \leq_{p} LP.
Ex. 3-SAT $\leq p 3$-COLOR.

Assignment Problem

Assignment problem. Assign n jobs to n machines to minimize total cost, where $\mathrm{c}_{\mathrm{ij}}=$ cost of assignment job j to machine i .

cost $=8+7+20+8+11=44$

Applications. Match jobs to machines, match personnel to tasks, match PU students to writing seminars.

LP formulation. $x_{i j}=1$ if job j assigned to machine i.

$$
\begin{array}{lrlr}
\min & \sum_{1 \leq i \leq n} \sum_{1 \leq j \leq n} c_{i j} x_{i j} & \\
\text { s. t. } & \sum_{1 \leq j \leq n} x_{i j} & =1 & 1 \leq i \leq n \\
\sum_{1 \leq i \leq n} x_{i j} & =1 & 1 \leq j \leq n \\
& x_{i j} & \geq 0 & 1 \leq i, j \leq n
\end{array}
$$

Theorem. [Birkhoff 1946, von Neumann 1953] All extreme points of the above polyhedron are $\{0-1\}$-valued.

Corollary. Assignment problem reduces to LP; can solve in poly-time 1
we assume LP returns an extreme point solution

Graph 3-Colorability

3-COLOR. Given a graph, is there a way to color the vertices red, green, and blue so that no adjacent vertices have the same color?

Literal: A Boolean variable or its negation.
x_{i} or $\overline{x_{i}}$
Clause. A disjunction of 3 distinct literals.
$C_{j}=x_{1} \vee \overline{x_{2}} \vee x_{3}$
Conjunctive normal form. A propositional

SAT. Given CNF formula Φ, does it have a satisfying truth assignment?

```
Ex. (\overline{x}}\vee\mp@subsup{x}{2}{}\vee\mp@subsup{x}{3}{})\wedge(\mp@subsup{x}{1}{}\vee\overline{\mp@subsup{x}{2}{}}\vee\mp@subsup{x}{3}{})\wedge(\overline{\mp@subsup{x}{1}{}}\vee\overline{\mp@subsup{x}{2}{}}\vee\overline{\mp@subsup{x}{3}{}}
Yes. }\mp@subsup{x}{1}{}=\mathrm{ true, }\mp@subsup{x}{2}{}=\mathrm{ true, }\mp@subsup{x}{3}{}=\mathrm{ false
```


Graph 3-Colorability

3-COLOR. Given a graph, is there a way to color the vertices red, green, and blue so that no adjacent vertices have the same color?

Claim. $3-$ SAT $\leq p 3-C O L O R$.
Pf. Given 3-SAT instance Φ, we construct an instance of 3-COLOR that is 3 -colorable iff Φ is satisfiable.

Construction.
i. Create one vertex for each literal.
ii. Create 3 new vertices T, F, and B; connect them in a triangle, and connect each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, attach a gadget of 6 vertices and 13 edges.
to be described next

Graph 3-Colorability

Claim. Graph is 3 -colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph is 3-colorable.

- Consider assignment that sets all T literals to true
- (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites.
- (iv) ensures at least one literal in each clause is T.

Claim. Graph is 3 -colorable iff Φ is satisfiable.
Pf. \Rightarrow Suppose graph is 3-colorable.

- Consider assignment that sets all T literals to true.
- (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites.

Graph 3-Colorability

Claim. Graph is 3 -colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph is 3-colorable.

- Consider assignment that sets all T literals to true.
- (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites.
- (iv) ensures at least one literal in each clause is T.

Claim. Graph is 3 -colorable iff Φ is satisfiable.
Pf. \Leftarrow Suppose 3-SAT formula Φ is satisfiable.

- Color all true literals T.
- Color node below green node F, and node below that B.
- Color remaining middle row nodes B.
- Color remaining bottom nodes T or F as forced. -

Cook + Karp

More Poly-Time Reductions

Reductions are important in theory to:

- Classify problems according to their computational requirements.

Establish intractability.
Establish tractability.

Reductions are important in practice to:

- Design algorithms.

Design reusable software modules.

- stack, queue, sorting, priority queue, symbol table
graph, shortest path, regular expressions, linear programming
- Determine difficulty of your problem and choose the right tool.
- use exact algorithm for tractable problems
- use heuristics for NP-hard problems
e.g., bin packing

[^0]: Observation. Region $\left\{x: x^{2} \geq x\right\}$ is convex \Rightarrow all points are on hull.
 Consequence. Starting at point with most negative x, counter-clockwise order of hull points yields items in ascending order.

