Reductions

Robert Sedgewick and Kevin Wayne - Copyright © 2005 - http://www.Princeton EDU/~cos226

Reduction

Def. Problem X reduces to problem Y if given a subroutine for Y,
can solve X. don't confuse with reduces from

« Cost of solving X = cost of solving Y + cost of reduction.

« Ex: X = closest pair, Y = Voronoi.

Consequences.

« Classify problems: establish relative difficulty between two problems.

=« Design algorithms: given algorithm for Y, can also solve X.
. Establish intractability: if X is hard, thensois Y.

Desiderata

Desiderata. Classify problems according to their computational
requirements.

Frustrating news. Huge number of fundamental problems have defied
classification for decades.

Desiderata’. Suppose we could (couldn't) solve problem X efficiently.
What else could (couldn't) we solve efficiently?

Linear Time Reductions

Robert Sedgewick and Kevin Wayne - Copyright © 2005 - http://www.Princeton EDU/~cos226

Linear Time Reductions

Def. Problem X linear reduces to problem Y if X can be solved with:
« Linear number of standard computational steps.
= One call fo subroutine for V.
= Notation: X = V.

Some familiar examples.
« Dedup < sorting.
= Median < sorting.
« Convex hull = Voronoi.
«» Closest pair < | Voronoi.

« Arbitrage < | hegative cycle detection.
« Brewer's problem < linear programming.

Shortest Paths

Claim. Undirected shortest path (with nonnegative weights) linearly
reduces to directed shortest path.

Pf. Replace each undirected edge by two directed edges.

TN
/LN\)

Z8 NN

Linear Time Reductions

Def. Problem X linear reduces to problem Y if X can be solved with:
« Linear number of standard computational steps.
« One call to subroutine for V.

Consequences.
« Design algorithms: given algorithm for Y, can also solve X.

. Establish intractability: if X is hard, thensois Y.
« Classify problems: establish relative difficulty between two problems.

Shortest Paths with Negative Weights

Caveat. Reduction invalid in networks with negative weights
(even if no negative cycles).

@ — @« —@

Remark. Can still solve shortest path problem in undirected graphs if

no negative cycles, but heed more sophisticated techniques.
AN

reduces to weighted non-bipartite matching (1)

Convex Hull and Sorting

Sorting. Given N distinct integers, rearrange them in ascending order.

Convex hull. Given N points in the plane, identify the extreme points
on the convex hull (in counter-clockwise order).

Claim. Convex hull linear reduces to sorting.
Pf. Graham scan algorithm.

Sorting and Convex Hull

Sorting. Given N distinct integers, rearrange them in ascending order.

Convex hull. Given N points in the plane, identify the extreme points
on the convex hull (in counter-clockwise order).

Claim. Sorting linear reduces to convex hull.

Linear Time Reductions

Def. Problem X linear reduces to problem Y if X can be solved with:
« Linear number of standard computational steps.
« One call to subroutine for V.

Consequences.
« Design algorithms: given algorithm for Y, can also solve X.
« Establish intractability: if X is hard, thensoisY.
« Classify problems: establish relative difficulty between two problems.

Sorting Linear Reduces to Convex Hull

Sorting instance. Xpy Xypeens Xy
Convex hull instance. (x,, x7), (x, x3)..... (xy, x2)

=i

Observation. Region {x : x2 = x} is convex = all points are on hull.

Consequence. Starting at point with most negative x, counter-clockwise
order of hull points yields items in ascending order.

Sorting and Convex Hull: Lower Bound

Theorem. In quadratic decision tree model of computation,
sorting N integers requires Q(N log N) steps. \

allow tests of the form x; < x; or
(X; = %) (i - ¥ - (v - ¥) (X - X)) < O
we just proved this

<
Claim. Sorting linear reduces to convex hull.

Corollary. Any ccw-based convex hull algorithm requires Q(N log N) steps.

3-SUM Reduces to 3-COLLINEAR

Claim. If a, b, and c are distinct thena+ b + ¢ = 0 if and only if
(a, @3), (b, b3), (c, c3) are collinear.

m{ /oy= x3

Pf. Three points (a, a3), (b, b3), (c, c3) are collinear iff:

A A (a=b)(a*+ab+b®) _ (b=c)(b*+bc+c?)
a-b - b-c

c*+bc—a’—ab=0
(c—a)(c+a+b)=0

c=a or a+b+c=0

a-b b-c

A

3-SUM Reduces to 3-COLLINEAR

3-SUM. Given N distinct integers, are there 3 that sum to 0?

3-COLLINEAR. Given N distinct points in the plane, are there 3 points
that all lie on the same line?

Claim. 3-SUM < 3-COLLINEAR.

Pf.

«» 3-SUM instance: Xp» Xseees Xy

« 3-COLLINEAR instance: (x;.), (. x3)..... (xy. X3)

3-SUM and 3-COLLINEAR

Conjecture. Any algorithm for 3-SUM requires Q(N?) time.

we just proved this

e
Claim. 3-SUM = 3-COLLINEAR.

Corollary. If no sub-quadratic algorithm for 3-SUM, then
no sub-quadratic algorithm for 3-COLLINEAR.

Linear Time Reductions Primality and Compositeness

Def. Problem X linear reduces to problem Y if X can be solved with: PRIME. Given an integer x (represented in decimal), is x prime?

» Linear number of standard computational steps. COMPOSITE. Given an integer x, does x have a nhontrivial factor?
= One call fo subroutine for V.

Claim. PRIME = COMPOSITE.

Consequences.
. Design algorithms: given algorithm for Y, can also solve X. PelEllle EEEE e SEEER(EnE B) |
. Establish intractability: if X is hard, thensois Y. ;fsélscomposue 50 iztﬁix iii:?'
« Classify problems: establish relative difficulty between two problems. }
17 18
Primality and Compositeness Reduction Gone Wrong
PRIME. Given an integer x (represented in decimal), is x prime? Caveat.

COMPOSITE. Given an integer x, does x have a nontrivial factor? « System designer specs the interfaces for project.

= One programmer might implement isComposite uSing isPrime.
« Another programmer might implement isPrime using isComposite.
« Be careful to avoid infinite reduction loops in practice.

Claim. COMPOSITE = | PRIME.

public static boolean isComposite(int x) {
if (isPrime(x)) return false;
else return true;

public static boolean isComposite (int x) {
if (isPrime(x)) return false;
else return true;

public static boolean isPrime (int x) {
if (isComposite(x)) return false;
else return true;

Polynomial-Time Reductions

Robert Sedgewick and Kevin Wayne - Copyright © 2005 - http://www.Princeton.EDU/~cos226

Poly-Time Reductions

Goal. Classify and separate problems according to relative difficulty.
« Those that can be solved in polynomial time.
« Those that (probably) require exponential time.

Establish tractability. If X =, Y and Y can be solved in poly-time,
then X can be solved in poly-time.

Establish intractability. If Y <, X and Y cannot be solved in poly-time,
then X cannot be solved in poly-time.

Useful property. If X<pYand Y =p Z then X <, Z.

Poly-Time Reduction

Def. Problem X polynomial reduces to problem Y if arbitrary instances
of problem X can be solved using:

« Polynomial number of standard computational steps, plus

= One call to subroutine for V.

Notation. X =, V.

Ex. Assignment problem <, LP.
Ex. 3-SAT =, 3-COLOR.

Assignment Problem

Assignment problem. Assign n jobs to n machines to minimize total
cost, where ¢;; = cost of assignment job j to machine i.

cost=3+10+11+20+9=53 cost=8+7+20+8+11=44

Applications. Match jobs to machines, match personnel to tasks,
match PU students to writing seminars.

Assignment Problem Reduces to Linear Programming

LP formulation. x; = 1if job j assigned to machine i.

Theorem. [Birkhoff 1946, von Neumann 1953] All extreme points of
the above polyhedron are {0-1}-valued.

Corollary. Assignment problem reduces to LP; can solve in poly-time.

\

we assume LP returns an extreme point solution

Graph 3-Colorability

3-COLOR. Given a graph, is there a way to color the vertices
red, green, and blue so that no adjacent vertices have the same color?

3-Satisfiability
Literal: A Boolean variable or its negation. x; or x;
Clause. A disjunction of 3 distinct literals. Ci=x v x, v

Conjunctive normal form. A propositional
formula ® that is the conjunction of clauses.

D = GAC A Cya Cy

SAT. Given CNF formula @, does it have a satisfying truth assignment?

Graph 3-Colorability

3-COLOR. Given a graph, is there a way to color the vertices
red, green, and blue so that no adjacent vertices have the same color?

true

Graph 3-Colorability

Claim. 3-SAT <, 3-COLOR.

Pf. Given 3-SAT instance ®, we construct an instance of 3-COLOR that
is 3-colorable iff @ is satisfiable.

Construction.
i. Create one vertex for each literal.
ii. Create 3 new vertices T, F, and B; connect them in a triangle,
and connect each literal to B.
iii. Connect each literal to its negation.

iv. For each clause, attach a gadget of 6 vertices and 13 edges.
\

to be described next

Graph 3-Colorability

Claim. Graph is 3-colorable iff @ is satisfiable.

Pf. = Suppose graph is 3-colorable.
=« Consider assignment that sets all T literals to true.
« (ii) ensures each literal is T or F.
« (iii) ensures a literal and its negation are opposites.
- (iv) ensures at least one literal in each clause is T.

C,=x, Vx,Vx

true

Graph 3-Colorability

Claim. Graph is 3-colorable iff @ is satisfiable.

Pf. = Suppose graph is 3-colorable.

=« Consider assignment that sets all T literals to true.

« (ii) ensures each literal is T or F.

« (iii) ensures a literal and its negation are opposites.

true false

Graph 3-Colorability

Claim. Graph is 3-colorable iff @ is satisfiable.

Pf. = Suppose graph is 3-colorable.

=« Consider assignment that sets all T literals to true.

« (ii) ensures each literal is T or F.

« (iii) ensures a literal and its negation are opposites.

- (iv) ensures at least one literal in each clause is T.

6-node gadget

not 3-

/

/

colorable if all are red

C,=x, Vx,Vux

contradiction

"i' false

Graph 3-Colorability

Claim. Graph is 3-colorable iff @ is satisfiable.

Pf. —« Suppose 3-SAT formula @ is satisfiable.
« Color all true literals T.
« Color node below green node F, and node below that B.
=« Color remaining middle row nodes B.
=« Color remaining bottom nodes T or F as forced. =

aliteral set o true in 3-SAT assignment

/

C,=x, Vx,Vux

true

Cook's Theorem

3-SAT

3-COLOR 30M VERTEX COVER Stephen Cook
Turing award (1982)

EXACT COVER PLANAR-3-COLOR CLIQUE HAM-CYCLE
SUBSET-SUM INDEPENDENT SET TSP HAM-PATH
PARTITION INTEGER PROGRAMMING

/

All of these problems (any many more)

KNAPSACK BIN-PACKING polynomial reduce to 3-SAT.

More Poly-Time Reductions

3-SAT

3-COLOR 3DM VERTEX COVER Dick Karp
Turing award (1985)

EXACT COVER PLANAR-3-COLOR CLIQUE HAM-CYCLE
SUBSET-SUM INDEPENDENT SET TSP HAM-PATH

PARTITION INTEGER PROGRAMMING

/

Conjecture: no poly-time algorithm for 3-SAT.

KNABsACK BN (and hence none of these problems)

Cook + Karp
3-SAT
VERTEX COVER

EXACT COVER PLANAR-3-COLOR CLIQUE HAM-CYCLE

| N
SUBSET-SUM INDEPENDENT SET TSP HAM-PATH

|

PARTITION INTEGER PROGRAMMING

[~

All of these problems are different manifestations
KNAPSACK BIN-PACKING

of one "really hard" problem: P = NP?

Summary

Reductions are important in theory to:

« Classify problems according to their computational requirements.
« Establish intractability.

« Establish tractability.

Reductions are important in practice to:
= Design algorithms.
=« Design reusable software modules.
- stack, queue, sorting, priority queue, symbol table
graph, shortest path, regular expressions, linear programming
« Determine difficulty of your problem and choose the right tool.
- use exact algorithm for tractable problems
- use heuristics for NP-hard probl\ems

e.g., bin packing

