Priority Queues

Reference: Chapter 6, Algorithms in Java, 3rd Edition, Robert Sedgewick.

Robert Sedgewick and Kevin Wayne · Copyright © 2005 · http://www.Princeton.EDU/~cos226

Priority Queue Applications

Applications.

Event-driven simulation.
 customers in a line, colliding particles

Numerical computation.
 reducing roundoff error

Data compression.
 Huffman codes

Graph searching.
 Dijkstra's algorithm, Prim's algorithm

• Computational number theory. sum of powers

Artificial intelligence.
 A* search

Statistics.
 maintain largest M values in a sequence

Operating systems.
 load balancing, interrupt handling

Discrete optimization.
 Spam filtering.
 Bayesian spam filter

Generalizes: stack, queue, randomized queue.

Priority Queues

Data. Items that can be compared.

Basic operations.

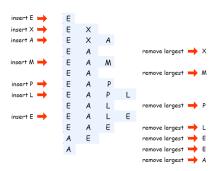
Insert. defining PQ ops
 Remove largest.

■ Copy.

generic . Create. ADT ops

Destroy.

Test if empty.



Priority Queue Client Example

Problem: Find the largest M of a stream of N elements.

- Fraud detection: isolate \$\$ transactions.
- File maintenance: find biggest files or directories.

Constraint. Not enough memory to store N elements. Solution. Use a priority queue.

Operation	time	space
sort	N lg N	N
elementary PQ	MN	M
binary heap	N lg M	M
best in theory	N	M

```
MaxPQ<String> pq = new MaxPQ<String>();
while(!StdIn.isEmpty()) {
   String s = StdIn.readString();
   pq.insert(s);
   if (pq.size() > M)
        pq.delMax();
}
while (!pq.isEmpty())
   System.out.println(pq.delMax());
```

Priority Queue: Elementary Implementations

Challenge. Implement both operations efficiently.

Implementation	Insert	Delmax
unordered array	1	N
ordered array	N	1

worst-case asymptotic costs for PQ with N items

insert P	P	P
insert Q	P Q	PQ
insert E	PQE	E P Q
delmax (Q)	PE	E P
insert X	PEX	EPX
insert A	PEXA	AEPX
insert M	PEXAM	AEMPX
$delmax\left(X\right)$	P E M A	A E M P
	unordered	ordered

Binary Heap

Heap: Array representation of a heap-ordered complete binary tree.

Binary tree.

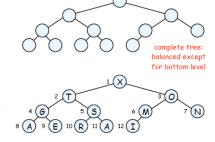
- Empty or
- Node with links to left and right trees.

Heap-ordered binary tree.

- Keys in nodes.
- No smaller than children's keys.

Array representation.

- Take nodes in level order.
- No explicit links needed since tree is complete.



1	2	3	4	5	6	7	8	9	10	11	12
Х	Т	0	G	5	М	Ν	Α	Е	R	Α	Ι

Priority Queue: Unordered Array Implementation

```
public class UnorderedPQ<Item extends Comparable> {
   private Comparable[] pq;
                                  pq[i] = ith element
                                  number of elements on PQ
   private int N;
   public UnorderedPQ(int maxN) { pq = new Comparable[maxN]; }
   public boolean isEmpty() { return N == 0; }
   public void insert(Item x) {
      pq[N++] = x;
                           insert element x into PQ
   public Item delMax() {
      int max = 0;
      for (int i = 1; i < N; i++)</pre>
          if (less(max, i)) max = i;
      exch(max, N-1);
      return (Item) pq[--N];
                      remove and return max element from PQ
```

Binary Heap Properties

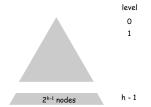
Property A. Largest key is at root.

Property B. Can use array indices to move through tree.

- Note: indices start at 1.
- Parent of node at k is at k/2.
- Children of node at k are at 2k and 2k+1.
- 1 2 3 4 5 6 7 8 9 10 11 12 X T O G S M N A E R A I

Property C. Height of heap is $h = 1 + \lfloor \lg N \rfloor$.

- Level i has at most 2i nodes.
- $1 + 2 + 4 + ... + 2^{h-1} \ge N$.



Promotion In a Heap

Scenario. Exactly one node is smaller than a child.

Demotion In a Heap

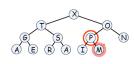
Scenario. Exactly one node is bigger than its parent.

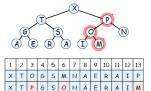
To eliminate the violation:

- Exchange with its parent.
- Repeat until heap order restored.

Peter principle: node promoted to level of incompetence.





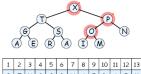


13

To eliminate the violation:

- Exchange with larger child.
- Repeat until heap order restored.

Power struggle: better subordinate promoted.

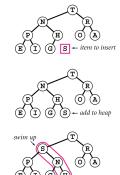


1 2 3 4 5 6 7 8 9 10 11 12 13 O T X 6 S P N A E R A I M X T P 6 S O N A E R A I M

Insert

Insert. Add node at end, then promote.

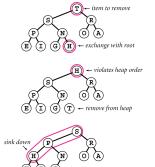
```
public void insert(Item x) {
   pq[++N] = x;
   swim(N);
}
```



Remove the Maximum

Remove max. Exchange root with node at end, then demote.

```
public Item delMax() {
   Item max = (Item) pq[1];
   exch(1, N--);
   sink(1);
   pq[N+1] = null;
   return max;
}
```



Binary Heap: Skeleton

```
public class MaxPQ<Item extends Comparable> {
   private Comparable[] pq;
  private int N;
                                      same as array-based PQ,
   public MaxPQ(int maxN) { }
                                      but allocate one extra element in array
   public boolean isEmpty() { }
   public void insert(Item x) { }
                                                 PQ ops
   public Item delMax()
   private void swim(int k) { }
                                                heap helper functions
   private void sink(int k) { }
   private boolean less(int i, int j) { }
                                                 array helper functions
   private void
                    exch(int i, int j) { }
```

Priority Queues Implementation Cost Summary

Operation	Insert	Remove Max	Find Max
ordered array	N	1	1
ordered list	N	1	1
unordered array	1	N	N
unordered list	1	N	N
binary heap	lg N	lg N	1

worst-case asymptotic costs for PQ with N items

Hopeless challenge: get all ops O(1). Why hopeless?

Binary Heap Considerations

Minimum oriented priority queue. Replace less with greater and implement greater.

Array resizing. Support no-argument constructor, and implement repeated doubling so that operations take O(log N) amortized time.

Immutability of keys. We assume client does not change keys while they're on the PQ. It's a good idea for client to use immutable objects.

Other operations.

- Remove an arbitrary item.
- Change the priority of an item.
- Can implement using sink and swim abstractions, but we defer.

Digression: Heapsort

First pass: build heap.

- Insert items into heap, one at at time.
- Or can use faster bottom-up method; see book.

```
for (int k = N / 2; k >= 1; k--)
sink(a, k, N);
```

Second pass: sort.

- Remove maximum items, one at a time.
- Leave in array, instead of nulling out.

```
while (N > 1) {
   exch(a, 1, N--);
   sink(a, 1, N);
}
```

Property D. At most 2 N Ig N comparisons.

```
HEAPSORTING
HEAPSORTING
HEATSORPING
HERTSOAPING
HTRPSOAEING
T(S)RP(N)OAEI(H)G
TSRPNOAEIHG
(SPRGNOAEIHT
RPOGNHAEIST
PNOGTHAERST
ONHGIEAPRST
N(I) H G(A) E O P R S T
TGHEANOPRST
HGAEINOPRST
GAEHINOPRST
EAGHINOPRST
A E G H I N O P R S T
AEGHINOPRST
```

Significance of Heapsort

Q: Sort in O(N log N) worst-case without using extra memory? A: Yes. Heapsort.

Not mergesort? Linear extra space. Not quicksort? Quadratic time in worst case. challenge for bored: O(N log N)

challenge for bored: in-place merge

worst-case quicksort

Heapsort is optimal for both time and space, but:

- Inner loop longer than quicksort's.
- Makes poor use of cache memory.

In the wild: g++ STL uses introsort.

combo of quicksort, heapsort, and insertion

A* Algorithm

Sorting Summary

	In-Place	Stable	Worst	Average	Best	Remarks
Bubble sort	×	X	N ² / 2	N ² / 2	N	never use it
Selection sort	×		N ² / 2	N ² / 2	$N^2/2$	N exchanges
Insertion sort	×	X	N ² / 2	N ² / 4	N	use as cutoff for small N
Shellsort	×		N ^{3/2}	N ^{3/2}	N ^{3/2}	with Knuth sequence
Quicksort	×		N ² / 2	2N ln N	N lg N	fastest in practice
Mergesort		X	N lg N	N lg N	N lg N	N log N guarantee, stable
Heapsort	X		2 N lg N	2 N lg N	N lg N	N log N guarantee, in-place

Key Comparisons

Sam Loyd's 15-Slider Puzzle

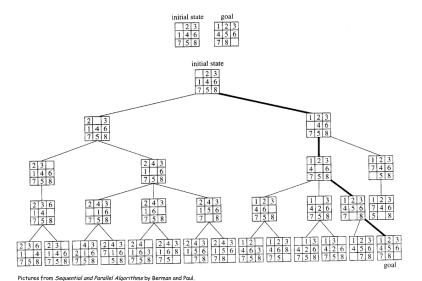
15 puzzle.

- Legal move: slide neighboring tile into blank square.
- Challenge: sequence of legal moves to put tiles in increasing order.
- Win \$1,000 prize for solution.

http://www.javaonthebrain.com/java/puzz15/

Sam Loyd

Breadth First Search of 8-Puzzle Game Tree



Slider Puzzle: Unsolvable Instances

Unsolvable instances.

1	2	3
4	5	6
8	7	

1 2 3 4 5 6 7 8 9 10 11 12 13 15 14

8-slider invariant. Parity of number of pairs of pieces in reverse order.

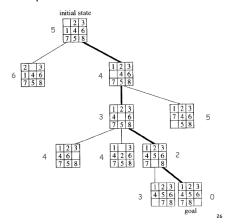
3	1	2		3	1	2			3	1	2	
4	5	6		4	5	6			4		6	
8	7			8		7			8	5	7	
1-3, 2-3, 7-8 odd		1-3	, 2-3 odd	•	3	1-3,	2-3	, 7-8 odd		i, 5-6		

A* Search of 8-Puzzle Game Tree

Priority first search.

- Basic idea: explore positions in a more intelligent order.
- ⇒ Ex 1: number of tiles out of order.
 - Ex 2: sum of Manhattan distances + depth.

Implement A* algorithm with PQ.



Event-Driven Simulation

Molecular Dynamics Simulation of Hard Spheres

Goal. Simulate the motion of N moving particles that behave according to the laws of elastic collision.

Hard sphere model.

- Moving particles interact via elastic collisions with each other, and with fixed walls.
- Each particle is a sphere with known position, velocity, mass, and radius.
- No other forces are exerted.

temperature, pressure, motion of individual diffusion constant atoms and molecules

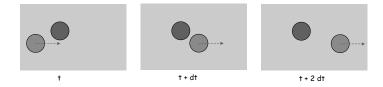
Significance. Relates macroscopic observables to microscopic dynamics.

- Maxwell and Boltzmann: derive distribution of speeds of interacting molecules as a function of temperature.
- Einstein: explain Brownian motion of pollen grains.

Time-Driven Simulation

Main drawbacks.

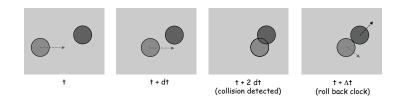
- N² overlap checks per time quantum.
- May miss collisions if dt is too large and colliding particles fail to overlap when we are looking.
- Simulation is too slow if dt is very small.



Time-Driven Simulation

Time-driven simulation.

- Discretize time in quanta of size dt.
- Update the position of each particle after every dt units of time, and check for overlaps.
- If overlap, roll back the clock to the time of the collision, update the velocities of the colliding particles, and continue the simulation.



Event-Driven Simulation

Event-driven simulation.

29

- Between collisions, particles move in straight-line trajectories.
- Focus only on times when collisions occur.
- Maintain priority queue of collision events, prioritized by time.
- Remove the minimum = get next collision.

Collision prediction. Given position, velocity, and radius of a particle, when will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s) according to laws of elastic collisions.

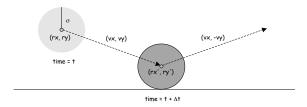
Particle-Wall Collision

Collision prediction.

- Particle of radius σ at position (rx, ry), moving with velocity (vx, vy).
- Will it collide with a horizontal wall? If so, when?

$$\Delta t = \begin{cases} \infty & \text{if } vy = 0\\ (\sigma - ry)/vy & \text{if } vy < 0\\ (1 - \sigma - ry)/vy & \text{if } vy > 0 \end{cases}$$

Collision resolution. (vx', vy') = (vx, -vy).



Particle-Particle Collision Prediction

Collision prediction.

- Particle i: radius σ_i , position (rx_i, ry_i) , velocity (vx_i, vy_i) .
- Particle j: radius σ_i , position (rx_i, ry_i) , velocity (vx_i, vy_i) .
- Will particles i and j collide? If so, when?

$$\Delta t = \begin{cases} \infty & \text{if } \Delta v \cdot \Delta r \ge 0 \\ \infty & \text{if } d < 0 \\ -\frac{\Delta v \cdot \Delta r + \sqrt{d}}{\Delta v \cdot \Delta v} & \text{otherwise} \end{cases}$$

$$d = (\Delta v \cdot \Delta r)^2 - (\Delta v \cdot \Delta v) (\Delta r \cdot \Delta r - \sigma^2) \qquad \sigma = \sigma_i + \sigma_j$$

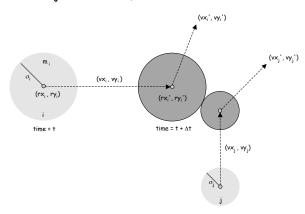
$$\begin{array}{lll} \Delta v = (\Delta vx, \ \Delta vy) &= \ (vx_i - vx_j, \ vy_i - vy_j) & \Delta v \cdot \Delta v = (\Delta vx)^2 + (\Delta vy)^2 \\ \Delta r = (\Delta rx, \ \Delta ry) &= \ (rx_i - rx_j, \ ry_i - ry_j) & \Delta r \cdot \Delta r = (\Delta rx)^2 + (\Delta ry)^2 \\ \Delta v \cdot \Delta r = (\Delta vx)(\Delta rx) + (\Delta vy)(\Delta ry) & \Delta v \cdot \Delta r = (\Delta vx)(\Delta rx) + (\Delta vy)(\Delta ry) \end{array}$$

Particle-Particle Collision Prediction

Collision prediction.

33

- Particle i: radius σ_i , position (rx_i, ry_i) , velocity (vx_i, vy_i) .
- Particle j: radius σ_i , position (rx_i, ry_i) , velocity (vx_i, vy_i) .
- Will particles i and j collide? If so, when?



Particle-Particle Collision Prediction

Collision resolution. When two particles collide, how does velocity change?

$$Jx \ = \ \frac{J\,\Delta rx}{\sigma}, \ Jy \ = \ \frac{J\,\Delta ry}{\sigma}, \ J \ = \ \frac{2\,m_i\,m_j\,(\Delta v\cdot\Delta r)}{\sigma(m_i+m_j)}$$

impulse due to normal force (conservation of energy, conservation of momentum) 34

Event-Driven Simulation

Initialization. Fill PQ with all potential particle-wall and particle-particle collisions.

† potential since collision may not happen if some other collision intervenes

Main loop.

- Delete the impending event from PQ (min priority = t).
- If the event in no longer valid, ignore it.
- Advance all particles to time t, on a straight-line trajectory.
- Update the velocities of the colliding particle(s).
- Predict future particle-wall and particle-particle collisions involving the colliding particle(s) and insert events onto PQ.