
Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Minimum Spanning Tree

Reference: Chapter 20, Algorithms in Java, 3rd Edition, Robert Sedgewick.

2

Minimum Spanning Tree

MST. Given connected graph G with positive edge weights, find a min

weight set of edges that connects all of the vertices.

23

10

21

 14

24

 16

 4

18

9

7

11

 8

G

5

6

3

Minimum Spanning Tree

MST. Given connected graph G with positive edge weights, find a min

weight set of edges that connects all of the vertices.

Theorem. [Cayley 1889] There are VV-2 spanning trees on the complete

graph on V vertices.
can't solve by brute force

23

10

21

 14

24

 16

 4

18

9

7

11

 8

cost(T) = 50

5

6

4

MST Origin

Otakar Boruvka (1926).

! Electrical Power Company of Western Moravia in Brno.

! Most economical construction of electrical power network.

! Concrete engineering problem is now a cornerstone problem in

combinatorial optimization.

Otakar Boruvka

5

Applications

MST is fundamental problem with diverse applications.

! Network design.
– telephone, electrical, hydraulic, TV cable, computer, road

! Approximation algorithms for NP-hard problems.
– traveling salesperson problem, Steiner tree

! Indirect applications.
– max bottleneck paths
– LDPC codes for error correction
– image registration with Renyi entropy
– learning salient features for real-time face verification
– reducing data storage in sequencing amino acids in a protein
– model locality of particle interactions in turbulent fluid flows
– autoconfig protocol for Ethernet bridging to avoid cycles in a network

! Cluster analysis.

6

Medical Image Processing

MST describes arrangement of nuclei in the epithelium for cancer research

http://www.bccrc.ca/ci/ta01_archlevel.html

8

Two Greedy Algorithms

Kruskal's algorithm. Consider edges in ascending order of cost.

Add the next edge to T unless doing so would create a cycle.

Prim's algorithm. Start with any vertex s and greedily grow a tree T

from s. At each step, add the cheapest edge to T that has exactly one

endpoint in T.

Theorem. Both greedy algorithms compute an MST.

Greed is good. Greed is right. Greed works. Greed
clarifies, cuts through, and captures the essence of
the evolutionary spirit." - Gordon Gecko

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Weighted Graphs

10

Weighted Graph Interface

for (int v = 0; v < G.V(); v++) {

 for (Edge e : G.adj(v)) {

 int w = e.other(v);

 // edge v-w

 }

}

iterate through all edges (once in each direction)

Return Type

WeightedGraph(int V)

Method Action

create empty graph

void insert(Edge e) add edge e

Iterable<Edge> adj(int v) return iterator over edges incident to v

int V() return number of vertices

String toString() return string representation

11

Edge Data Type

public class Edge implements Comparable<Edge> {

 public final int v, int w;

 public final double weight;

 public Edge(int v, int w, double weight) {

 this.v = v;

 this.w = w;

 this.weight = weight;

 }

 public int other(int vertex) {

 if (vertex == v) return w;

 else return v;

 }

 public int compareTo(Edge f) {

 Edge e = this;

 if (e.weight < f.weight) return -1;

 else if (e.weight > f.weight) return +1;

 else if (e.weight > f.weight) return 0;

 }

}

12

public class WeightedGraph {

 private int V; // # vertices

 private Sequence<Edge>[] adj; // adjacency lists

 public Graph(int V) {

 this.V = V;

 adj = new (Sequence<Edge>[]) Sequence[V];

 for (int v = 0; v < V; v++)

 adj[v] = new Sequence<Edge>();

 }

 public void insert(Edge e) {

 int v = e.v, w = e.w;

 adj[v].add(e);

 adj[w].add(e);

 }

 public Iterable<Edge> adj(int v) { return adj[v]; }

}

Weighted Graph: Java Implementation

Identical to Graph.java but use Edge adjacency lists instead of int.

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

MST Structure

14

Spanning Tree

MST. Given connected graph G with positive edge weights, find a min

weight set of edges that connects all of the vertices.

Def. A spanning tree of a graph G is a subgraph T that is connected

and acyclic.

Property. MST of G is always a spanning tree.

15

Greedy Algorithms

Simplifying assumption. All edge costs ce are distinct.

Cycle property. Let C be any cycle, and let f be the max cost edge

belonging to C. Then the MST does not contain f.

Cut property. Let S be any subset of vertices, and let e be the min

cost edge with exactly one endpoint in S. Then the MST contains e.

f
C

S

e is in the MST

e

f is not in the MST

16

Cut Property

Simplifying assumption. All edge costs ce are distinct.

Cut property. Let S be any subset of vertices, and let e be the min cost

edge with exactly one endpoint in S. Then the MST T* contains e.

Pf. [by contradiction]

! Suppose e does not belong to T*. Let's see what happens.

! Adding e to T* creates a (unique) cycle C in T*.

! Some other edge in C, say f, has exactly one endpoint in S.

! T = T* ! { e } " { f } is also a spanning tree.

! Since ce < cf, cost(T) < cost(T*).

! This is a contradiction. !

f

 T*

e

S

17

Cycle Property

Simplifying assumption. All edge costs ce are distinct.

Cycle property. Let C be any cycle in G, and let f be the max cost edge

belonging to C. Then the MST T* does not contain f.

Pf. [by contradiction]

! Suppose f belongs to T*. Let's see what happens.

! Deleting f from T* disconnects T*. Let S be one side of the cut.

! Some other edge in C, say e, has exactly one endpoint in S.

! T = T* ! { e } " { f } is also a spanning tree.

! Since ce < cf, cost(T) < cost(T*).

! This is a contradiction. !

f

 T*

e

S

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Kruskal's Algorithm

19

Kruskal's algorithm. [Kruskal 1956] Consider edges in ascending order

of cost. Add the next edge to T unless doing so would create a cycle.

Kruskal's Algorithm: Example

3-5 1-7 6-7

0-2 0-7 0-1 3-4 4-5 4-7

20

Kruskal's Algorithm: Example

25%

50%

75%

100%

21

C

e

Kruskal's Algorithm: Proof of Correctness

Theorem. Kruskal's algorithm computes the MST.

Pf (case 1). If adding e to T creates a cycle C, then e is the max weight

edge in C, so the cycle property asserts that e is not in the MST.

22

w

v

e
S

Kruskal's Algorithm: Proof of Correctness

Theorem. Kruskal's algorithm computes the MST.

Pf (case 2). If adding e = (v, w) to T does not create a cycle, then

e is the min weight edge with exactly one endpoint in S, so the

cut property asserts that e is in the MST. !
set of vertices in
v's connected component

23

Kruskal's Algorithm: Implementation

Q. How to check if adding an edge to T would create a cycle?

A1. Naïve solution: use DFS.

! O(V) time per cycle check.

! O(E V) time overall.

24

Kruskal's Algorithm: Implementation

Q. How to check if adding an edge to T would create a cycle?

A2. Use the union-find data structure.

! Maintain a set for each connected component.

! If v and w are in same component, then adding v-w creates a cycle.

! To add v-w to T, merge sets containing v and w.

Case 2: add v-w to T and merge sets

v w

Case 1: adding v-w creates a cycle

v

w

25

public class Kruskal {

 private Sequence<Edge> mst = new Sequence<Edge>();

 public Kruskal(WeightedGraph G) {

 // sort edges in ascending order

 Edge[] edges = G.edges();

 Arrays.sort(edges);

 // greedily add edges to MST

 UnionFind uf = new UnionFind(G.V());

 for (int i = 0; (i < E) && (mst.size() < G.V()-1); i++) {

 int v = edges[i].v;

 int w = edges[i].w;

 if (!uf.find(v, w)) {

 uf.unite(v, w);

 mst.add(edges[i]);

 }

 }

 }

 public Iterable<Edge> mst() { return mst; }

}

Kruskal's Algorithm: Java Implementation

safe to stop early if
tree already has V-1 edges

26

Kruskal's Algorithm: Running Time

Kruskal running time. O(E log V).

Remark. If edges already sorted: O(E log* V) time.

Operation

sort

union

find

Cost

E log V

log* V †

log* V †

Frequency

1

V - 1

E

† amortized bound using weighted quick union with path compression

recall: log* V # 5 in this universe

E # V2 so O(log E) is O(log V)

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Prim's Algorithm

28

Prim's Algorithm: Example

Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]

Start with vertex 0 and greedily grow tree T. At each step, add

cheapest edge that has exactly one endpoint in T.

29

Prim's Algorithm: Example

25%

50%

75%

100%

30

Prim's Algorithm: Proof of Correctness

Theorem. Prim's algorithm computes the MST.

Pf.

! Let S be the subset of vertices in current tree T.

! Prim adds the cheapest edge e with exactly one endpoint in S.

! Cut property asserts that e is in the MST. !

S e

31

Prim's Algorithm: Implementation

Q. How to find cheapest edge with exactly one endpoint in S?

A1. Brute force: try all edges.

! O(E) time per spanning tree edge.

! O(E V) time overall.

32

Prim's Algorithm: Implementation

Q. How to find cheapest edge with exactly one endpoint in S?

A2. Maintain edges with (at least) one endpoint in S in a priority queue.

! Delete min to determine next edge e to add to T.

! Disregard e if both endpoints are in S.

! Upon adding e to T, add edges incident to one endpoint to PQ.

Running time.

! O(log V) time per edge (using a binary heap).

! O(E log V) time overall.

the one not already in S

33

Prim's Algorithm: Java Implementation

public class LazyPrim {

 private Sequence<Edge> mst = new Sequence<Edge>();

 public LazyPrim(WeightedGraph G) {

 boolean[] marked = new boolean[G.V()];

 MinPQ<Edge> pq = new MinPQ<Edge>();

 marked[0] = true;

 for (Edge e : G.adj(0)) pq.insert(e);

 while (!pq.isEmpty()) {

 Edge e = pq.delMin();

 int v = e.v, w = e.w;

 if (!marked[v] || !marked[w]) mst.add(e);

 if (!marked[v])

 for (Edge f : G.adj(v)) pq.insert(f);

 if (!marked[w])

 for (Edge f : G.adj(w)) pq.insert(f);

 marked[v] = marked[w] = true;

 }

 }

}

these edges have
exactly one
endpoint in S

disregard edge if both
its endpoints are in S

is v in S?

add all edges incident to 0

34

Removing the Distinct Edge Costs Assumption

Simplifying assumption. All edge costs ce are distinct.

One way to remove assumption. Kruskal and Prim only access edge

weights throught compareTo; suffices to introduce tie-breaking rule.

public int compareTo(Edge f) {

 Edge e = this;

 if (e.weight < f.weight) return -1;

 if (e.weight > f.weight) return +1;

 if (e.v < f.v) return -1;

 if (e.v > f.v) return +1;

 if (e.w < f.w) return -1;

 if (e.w > f.w) return +1;

t) return 0;

}

35

Removing the Distinct Edge Costs Assumption

Simplifying assumption. All edge costs ce are distinct.

Fact. Prim and Kruskal don't actually rely on the assumption.

only our proof of correctness does!

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Advanced MST Algorithms

37

Advanced MST Algorithms

Worst Case

E log log V

E log log V

E log* V, E + V log V

E log (log* V)

E $(V) log $(V)

Discovered By

Yao

Cheriton-Tarjan

Fredman-Tarjan

Gabow-Galil-Spencer-Tarjan

Chazelle

E $(V)

optimal

Chazelle

Pettie-Ramachandran

Year

1975

1976

1984

1986

1997

2000

2002

deterministic comparison based MST algorithms

related problems

Problem

Planar MST

MST Verification

Discovered By

Cheriton-Tarjan

Dixon-Rauch-Tarjan

Year

1976

1992

Time

E

E

Randomized MST Karger-Klein-Tarjan1995 E

E ???20??

38

Euclidean MST

Euclidean MST. Given N points in the plane, find MST connecting them.

! Distances between point pairs are Euclidean distances.

Brute force. Compute &(N2) distances and run Prim's algorithm.

Ingenuity. Exploit geometry and do it in O(N log N).

39

Euclidean MST

Key geometric fact. Edges of the Euclidean MST are edges of the

Delaunay triangulation.

Euclidean MST algorithm.

! Compute Voronoi diagram to get Delaunay triangulation.

! Run Kruskal's MST algorithm on Delaunay edges.

Running time. O(N log N).

! Fact: # 3N Delaunay edges since it's planar.

! O(N log N) for Voronoi.

! O(N log N) for Kruskal.

Lower bound. Any comparison-based Euclidean

MST algorithm requires %(N log N) comparisons.

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Clustering

Outbreak of cholera deaths in London in 1850s.
Reference: Nina Mishra, HP Labs

41

Clustering

Clustering. Given a set of objects classify into coherent groups.

Distance function. Numeric value specifying "closeness" of two objects.

Fundamental problem. Divide into clusters so that points in different

clusters are far apart.

! Routing in mobile ad hoc networks.

! Identify patterns in gene expression.

! Document categorization for web search.

! Similarity searching in medical image databases

! Skycat: cluster 109 sky objects into stars, quasars, galaxies.

photos, documents. micro-organisms

number of corresponding pixels whose

intensities differ by some threshold

42

Clustering of Maximum Spacing

k-clustering. Divide objects into k non-empty groups.

Distance function. Assume it satisfies several natural properties.

! c(v, w) = 0 iff v = w (identity of indiscernibles)

! c(v, w) ' 0 (nonnegativity)

! c(v, w) = c(w, v) (symmetry)

Spacing. Min distance between any pair of points in different clusters.

Clustering of maximum spacing. Given an integer k, find a k-clustering

of maximum spacing.

spacing

k = 4

43

Single-Link Clustering Algorithm

Single-link k-clustering algorithm.

! Form V clusters of one object each.

! Find the closest pair of objects such that each object is in a

different cluster, and add an edge between them.

! Repeat until there are exactly k clusters.

Observation. This procedure is precisely Kruskal's algorithm

(except we stop when there are k connected components).

Property. Algorithm finds a k-clustering of maximum spacing.

44

Dendrogram

Dendrogram. Scientific visualization of hypothetical sequence of

evolutionary events.

! Leaves = genes.

! Internal nodes = hypothetical ancestors.

Reference: http://www.biostat.wisc.edu/bmi576/fall-2003/lecture13.pdf

45

Dendrogram of Cancers in Human

Tumors in similar tissues cluster together.

Reference: Botstein & Brown group

Gene 1

Gene n

gene expressed

gene not expressed

