
Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Geometric Algorithms

Reference: Chapters 24-25, Algorithms in C, 2nd Edition, Robert Sedgewick.

2

Geometric Algorithms

Applications.

! Data mining.

! VLSI design.

! Computer vision.

! Mathematical models.

! Astronomical simulation.

! Geographic information systems.

! Computer graphics (movies, games, virtual reality).

! Models of physical world (maps, architecture, medical imaging).

History.

! Ancient mathematical foundations.

! Most geometric algorithms less than 25 years old.

Reference: http://www.ics.uci.edu/~eppstein/geom.html

airflow around an aircraft wing

3

Geometric Primitives

Point: two numbers (x, y).

Line: two numbers a and b [ax + by = 1]

Line segment: four numbers (x1, y1), (x2, y2).

Polygon: sequence of points.

Primitive operations.

! Is a point inside a polygon?

! Compare slopes of two lines.

! Distance between two points.

! Do two line segments intersect?

! Given three points p1, p2, p3, is p1-p2-p3 a counterclockwise turn?

Other geometric shapes.

! Triangle, rectangle, circle, sphere, . . .

! 3D and higher dimensions sometimes more complicated.

any line not through origin

4

Inside, Outside

Jordan curve theorem. Any continuous simple closed curve cuts the

plane in exactly two pieces: the inside and the outside.

Is a point inside a simple polygon?

Application. Draw a colored polygon on the screen.

Reference: http://www.ics.uci.edu/~eppstein/geom.html

5

Warning: Intuition May Mislead

Warning: intuition may be misleading.

! Humans have spatial intuition in 2D and 3D.

Is a given polygon simple?

we think of this algorithm sees this

1 6 5 8 7 2

7 8 6 4 2 1

1 15 14 13 12 11 10 9 8 7 6 5 4 3 2

1 2 18 4 18 4 19 4 19 4 20 3 20 3 20

1 10 3 7 2 8 8 3 4

6 5 15 1 11 3 14 2 16

6

Warning: Intuition May Mislead

Warning: intuition may be misleading.

! Humans have spatial intuition in 2D and 3D.

! Computers do not.

! Neither has good intuition in higher dimensions!

7

CCW. Given three point a, b, and c, is a-b-c a counterclockwise turn?

! Analog of comparisons in sorting.

! Idea: compare slopes.

Lesson. Geometric primitives are tricky to implement.

! Dealing with degenerate cases.

! Coping with floating point precision.

Implementing CCW

c

a

b

Yes

b

a

c

No

c

a

b

Yes
(! slope)

c

a

b

???
(collinear)

c

b

a

???
(collinear)

b

a

c

???
(collinear)

8

Implementing CCW

CCW. Given three point a, b, and c, is a-b-c a counterclockwise turn?

! Determinant gives twice area of triangle.

! If area > 0 then a-b-c is counterclockwise.

If area < 0, then a-b-c is clockwise.

If area = 0, then a-b-c are collinear.

! Avoids floating point precision when coordinates are integral.

!

2 " Area(a, b, c) =

ax ay 1

bx by 1

cx cy 1

= (bx # ax)(cy # ay) # (by # ay)(cx # ax)

> 0

(ax, ay)

< 0

(bx, by)

(cx, cy)

(cx, cy)

(ax, ay)(bx, by)

9

Immutable Point ADT

public final class Point {

 public final int x;

 public final int y;

 public Point(int x, int y) { this.x = x; this.y = y; }

 public double distanceTo(Point q) {

 Point p = this;

 return Math.hypot(p.x - q.x, p.y - q.y);

 }

 public static int ccw(Point a, Point b, Point c) {

 double area2 = (b.x-a.x)*(c.y-a.y) - (b.y-a.y)*(c.x-a.x);

 if (area2 < 0) return -1;

 else if (area2 > 0) return +1;

 else return 0;

 }

 public static boolean collinear(Point a, Point b, Point c) {

 return ccw(a, b, c) == 0;

 }

}

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Convex Hull

11

Convex Hull

A set of points is convex if for any two points p and q, the line segment

pq is completely in the set.

Convex hull. Smallest convex set containing the points.

Properties.

! "Simplest" shape that approximates set of points.

! Shortest (perimeter) fence surrounding the points.

! Smallest (area) convex polygon enclosing the points.

convex not convex

convex hull

p

q

p

q

12

Convex Hull

Mechanical algorithm. Hammer nails perpendicular to plane; stretch

elastic rubber band around points.

Parameters.

! N = # points.

! M = # points on the hull.

Reference: http://www.dfanning.com/math_tips/convexhull_1.gif

13

Brute Force

Observation 1. Edges of convex hull connect pairs of points in P.

Observation 2. Edge pq is on convex hull if all other points are

counterclockwise of pq.

O(N3) algorithm. For all pairs of points p, q, check whether pq is an

edge of convex hull.

p

q

P

14

Package Wrap

Package wrap.

! Start with point with smallest y-coordinate.

! Rotate sweep line around current point in ccw direction.

! First point hit is on the hull.

! Repeat.

15

Package Wrap

Implementation.

! Compute angle between current point and all remaining points.

! Pick smallest angle larger than current angle.

! 2D analog of selection sort: "(MN) time.

16

Graham Scan: Example

Graham scan.

! Choose point p with smallest y-coordinate.

! Sort points by polar angle with p to get simple polygon.

! Consider points in order, and discard those that

would create a clockwise turn.

p

17

Graham Scan: Example

Implementation.

! Input: p[1], p[2], . . ., p[N] are points.

! Output: M and rearrangement so that p[1], ..., p[M] is convex hull.

! Total cost: O(N log N) for sort and O(N) for rest.

// preprocess so that p[1] has smallest y-coordinate

// sort by angle with p[1]

points[0] = points[N]; // sentinel

int M = 2;

for (int i = 3; i <= N; i++) {

 while (Point.ccw(p[M], p[M-1], p[i]) >= 0) {

 M--; // back up to include i on hull

 }

 M++;

 swap(points, M, i); // add i to putative hull

}

why?

18

Quick Elimination

Quick elimination.

! Choose a quadrilateral Q or rectangle R with 4 points as corners.

! If point is inside, can eliminate.

– 4 CCW tests for quadrilateral

– 4 comparisons for rectangle

Three-phase algorithm

! Pass through all points to compute R.

! Eliminate points inside R.

! Find convex hull of remaining points.

Impact.

! In practice, can eliminate almost all points

in O(N) time.

! Improves overall performance.

Q

these
points
eliminated

R

19

Convex Hull Algorithms Costs Summary

* assumes "reasonable" point distribution

Package wrap

Algorithm

Graham scan

Sweep line

Quick elimination

N M

Running Time

N log N

N log N

N *

Quickhull N log N

Best in theory N log M

Mergehull N log N

Asymptotic cost to find M-point hull in N-point set

output sensitive running time

20

How Many Points on the Hull?

Parameters.

! N = # points.

! M = # points on the hull.

How many points on hull?

! Worst case: N.

! Average case: difficult problems in stochastic geometry.

Uniform.

! On a circle: N.

! In a disc: N1/3.

! In a convex polygon with O(1) edges: log N.

21

Lower Bounds

Models of computation.

! Comparison based: compare coordinates.

(impossible to compute convex hull in this model of computation)

! Quadratic decision tree model: compute any quadratic function of

the coordinates and compare against 0.

Theorem. [Andy Yao 1981] In quadratic decision tree model, any

convex hull algorithm requires #(N log N) operations.

!

ccw(a, b, c) = axby " aybx + aycx " axcy +bxcy " cxby

!

less(a, b) = (ax < bx) || ((ax == bx) & & (ay < by))

higher degree polynomial tests
don't help either [Ben-Or 1983]

even if hull points are not required to be
output in counterclockwise order

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Closest Pair of Points

23

Closest Pair of Points

Closest pair. Given N points in the plane, find a pair with smallest

Euclidean distance between them.

Fundamental geometric primitive.

! Graphics, computer vision, geographic information systems,

molecular modeling, air traffic control.

! Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points p and q with "(N2) comparisons.

1-D version. O(N log N) easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems

24

Closest Pair of Points

Algorithm.

! Divide: draw vertical line L so that roughly !N points on each side.

L

25

Closest Pair of Points

Algorithm.

! Divide: draw vertical line L so that roughly !N points on each side.

! Conquer: find closest pair in each side recursively.

12

21

L

26

Closest Pair of Points

Algorithm.

! Divide: draw vertical line L so that roughly !N points on each side.

! Conquer: find closest pair in each side recursively.

! Combine: find closest pair with one point in each side.

! Return best of 3 solutions.

12

21
8

L

seems like "(N2)

27

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < $.

12

21

$ = min(12, 21)

L

28

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < $.

! Observation: only need to consider points within $ of line L.

12

21

$

L

$ = min(12, 21)

29

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < $.

! Observation: only need to consider points within $ of line L.

! Sort points in 2$-strip by their y coordinate.

$

12

21

1

2

3

4
5

6

7

$

L

$ = min(12, 21)

30$

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < $.

! Observation: only need to consider points within $ of line L.

! Sort points in 2$-strip by their y coordinate.

! Only check distances of those within 11 positions in sorted list!

12

21

1

2

3

4
5

6

7

$

L

$ = min(12, 21)

31

Closest Pair of Points

Def. Let si be the point in the 2$-strip, with

the ith smallest y-coordinate.

Claim. If |i – j| % 12, then the distance between

si and sj is at least $.

Pf.

! No two points lie in same !$-by-!$ box.

! Two points at least 2 rows apart

have distance % 2(!$). !

Fact. Still true if we replace 12 with 7.

$

27

29
30

31

28

26

25

$

!$

 2 rows
!$

!$

39

i

j

32

Closest Pair Algorithm

Closest-Pair(p1, …, pn) {

 Compute separation line L such that half the points

 are on one side and half on the other side.

 $1 = Closest-Pair(left half)

 $2 = Closest-Pair(right half)

 $ = min($1, $2)

 Delete all points further than $ from separation line L

 Sort remaining points by y-coordinate.

 Scan points in y-order and compare distance between

 each point and next 11 neighbors. If any of these

 distances is less than $, update $.

 return $.

}

O(N log N)

2T(N / 2)

O(N)

O(N log N)

O(N)

33

Closest Pair of Points: Analysis

Running time.

Q. Can we achieve O(N log N)?

A. Yes. Don't sort points in strip from scratch each time.

! Each recursive returns two lists: all points sorted by y coordinate,

and all points sorted by x coordinate.

! Sort by merging two pre-sorted lists.

!

T (N) " 2T N /2() + O(N) # T(N) = O(N logN)

!

T(N) " 2T N /2() + O(N logN) # T(N) = O(N log
2
N)

Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226

Nearest Neighbor

35

1854 Cholera Outbreak, Golden Square, London

Reference: http://content.answers.com/main/content/wp/en/c/c7/Snow-cholera-map.jpg

36

Nearest Neighbor

Input. N Euclidean points.

Nearest neighbor problem. Given a query point p, which one of original

N points is closest to p?

Voronoi of 2 points
(perpendicular bisector)

Voronoi of 3 points
(passes through circumcenter)

37

Nearest Neighbor

Input. N Euclidean points.

Nearest neighbor problem. Given a query point p, which one of original

N points is closest to p?

Brute force. O(N) time per query.

Goal. O(N log N) preprocessing, O(log N) per query.

38

Voronoi Diagram / Dirichlet Tesselation

Voronoi region. Set of all points closest to a given point.

Voronoi diagram. Planar subdivision delineating Voronoi regions.

Fact. Voronoi edges are perpendicular bisector segments.

Quintessential nearest neighbor data structure.

39

Applications of Voronoi Diagrams

Anthropology. Identify influence of clans and chiefdoms on geographic regions.

Astronomy. Identify clusters of stars and clusters of galaxies.

Biology, Ecology, Forestry. Model and analyze plant competition.

Cartography. Piece together satellite photographs into large "mosaic" maps.

Crystallography. Study Wigner-Setiz regions of metallic sodium.

Data visualization. Nearest neighbor interpolation of 2D data.

Finite elements. Generating finite element meshes which avoid small angles.

Fluid dynamics. Vortex methods for inviscid incompressible 2D fluid flow.

Geology. Estimation of ore reserves in a deposit using info from bore holes.

Geo-scientific modeling. Reconstruct 3D geometric figures from points.

Marketing. Model market of US metro area at individual retail store level.

Metallurgy. Modeling "grain growth" in metal films.

Physiology. Analysis of capillary distribution in cross-sections of muscle tissue.

Robotics. Path planning for robot to minimize risk of collision.

Typography. Character recognition, beveled and carved lettering.

Zoology. Model and analyze the territories of animals.

References: http://voronoi.com, http://www.ics.uci.edu/~eppstein/geom.html

40

Applications

Crystallography. N crystal seeds grow at a uniform rate. What is

appearance of crystal upon termination of growth?

Facility location. N homes in a region. Where to locate nuclear power

plant so that it is far away from any home as possible?

Path planning. Circular robot must navigate through environment with

N obstacle points. How to minimize risk of bumping into a obstacle?

Reference: J. O'Rourke. Computational Geometry.

looking for largest empty circle
(center must lie on Voronoi diagram)

robot should stay on Voronoi diagram of obstacles

41

Adding a Point to Voronoi Diagram

Challenge. Compute Voronoi.

Basis for incremental algorithms: region containing point gives points

to check to compute new Voronoi region boundaries.

How to represent the Voronoi diagram? Use multilist associating each

point with its Voronoi neighbors.

42

Randomized Incremental Voronoi Algorithm

Add points (in random order).

! Find region containing point.

! Update neighbor regions, create region for new point.

! Running time: O(N log N) on average.

use Voronoi itself

43

Discretized Voronoi Diagram

Discretized Voronoi.

! Approach 1: provide approximate answer (to within grid size).

! Approach 2: keep list of points to check in grid squares.

! Computation not difficult (move outward from points).

44

public class Voronoi implements DrawListener {

 private int SIZE = 512;

 private Point[][] nearest = new Point[SIZE][SIZE];

 private InteractiveDraw draw;

 public Voronoi() {

 draw = new InteractiveDraw(SIZE, SIZE);

 draw.setScale(0, 0, SIZE, SIZE);

 draw.addListener(this);

 draw.show();

 }

 public void keyTyped(char c) { }

 public void mouseDragged (double x, double y) { }

 public void mouseReleased(double x, double y) { }

Discretized Voronoi: Java Implementation

InteractiveDraw. Version of StdDraw that supports user interaction.

DrawListener. Interface to support InteractiveDraw callbacks.

send callbacks to Voronoi

45

Discretized Voronoi: Java Implementation

public void mousePressed(double x, double y) {

 Point p = new Point(x, y);

 draw.setColorRandom();

 for (int i = 0; i < SIZE; i++) {

 for (int j = 0; j < SIZE; j++) {

 Point q = new Point(i, j);

 if ((nearest[i][j] == null) ||

 (q.distanceTo(p) < q.distanceTo(nearest[i][j]))) {

 nearest[i][j] = p;

 draw.moveTo(i, j);

 draw.spot();

 }

 }

 }

 draw.setColor(StdDraw.BLACK);

 draw.moveTo(x, y);

 draw.spot(4);

 draw.show();

}

user clicks (x, y)

check every other point q to see if p
became its nearest neighbor

46

Voronoi Diagram

47

Delaunay Triangulation

Input: N Euclidean points.

Delaunay triangulation. Triangulation such that no point

is inside circumcircle of any other triangle.

Fact 1. Dual of Voronoi (connect adjacent points in Voronoi diagram).

Fact 2. No edges cross (planar) & O(N) edges.

Fact 3. Maximizes the minimum angle for all triangular elements.

Fact 4. Boundary of Delaunay triangulation is convex hull.

Fact 5. Closest pair in Delaunay graph is closest pair.

Delaunay

Voronoi

48

Some Geometric Algorithms

convex hull

Problem

closest pair

N2

Brute Force

N2

nearest neighbor N

N log N

Cleverness

N log N

log N

polygon triangulation N2 N log N

furthest pair N2 N log N

Asymptotic time to solve a 2D problem with N points

