
Princeton University
COS 217: Introduction to Programming Systems

Execution Profiler: Development Stages

Stage 1: A Simplified instrument Program

Design a simplified version of the instrument program. The simplified instrument
program should add code at the beginning of each assembly language function as
appropriate. The simplified instrument program should also add code at the end of the
assembly language program that creates function name strings in the rodata section.

Testing:

Design a suite of testing C programs. Use “gcc –S” to create assembly language
programs from those C programs. Instrument each of the assembly language programs.
Examine the results.

Stage 2: A Simplified __count() Function

Design a simplified __count() function (and subordinate functions) that uses a SymTable
object to accumulate function call counts, and that writes those counts to a “stats” file
immediately before process exit.

Testing:

Enhance your suite of testing C programs as appropriate. Compile, instrument, assemble,
and link those programs. Run those programs. Examine the results in the stats file. The
results should be similar to those produced by gprof (but they may not be identical).

Stage 3: The Complete instrument Program

Enhance your simplified instrument program from Stage 1, thus designing the complete
instrument program. Specifically, enhance your simplified instrument program so it also
adds code at the end of each function as appropriate, and so it adds code to the end of the
assembly language program that creates a “function name / function start address /
function end address” table in the rodata section.

Testing:

Enhance your suite of testing C programs as appropriate. Use “gcc –S” to create
assembly language programs from those C programs. Instrument each of the assembly
language programs. Examine the results.

Page 1 of 2

Stage 4: The Complete __count() function

Enhance your simplified __count() function (and subordinate functions) from Stage 2,
thus designing the complete __count() function. Specifically, enhance your simplified
__count() function so it uses signals and interval timers to accumulate function signal
counts, and writes those counts to a “stats” file immediately before process exit.

Testing:

Enhance your suite of testing C programs as appropriate. Compile, instrument, assemble,
and link those programs. Run those programs. Examine the results in the stats file. The
results should be similar to those produced by gprof (but they may not be identical).

Stage 5: Testing Strategy

Describe your strategy for testing the complete execution profiler in your readme file.

Copyright © 2005 by Robert M. Dondero, Jr.

Page 2 of 2

	COS 217: Introduction to Programming Systems
	Execution Profiler: Development Stages

