
1

Standard I/O Library
Implementation

COS 217

2

Goals of Today’s Lecture
• Challenge: generic I/O support for C programs
o Provide C programs with functions for input and output

– Stream concept, line-by-line input, formatted output, ...
o Implement across a variety of host OSes

• Solution: abstraction, and division of functionality
o Standard I/O

– ANSI C standard model and I/O functions for files
• Specific C implementation for each different system

– Additional features (e.g., buffered I/O and safe writing)
o Low-level I/O

– System calls that invoke OS services
• UNIX examples: open, close, read, write, seek

3

Stream Abstraction
• Any source of input or destination for output
o E.g., keyboard as input, and screen as output
o E.g., files on disk or CD, network ports, printer port, …

• Accessed in C programs through file pointers
o E.g., FILE *fp1, *fp2;
o E.g., fp1 = fopen(“myfile.txt”, “r”);

• Three streams provided by stdio.h
o Streams stdin, stdout, and stderr

– Typically map to keyboard, screen, and screen
o Can redirect to correspond to other streams

– E.g., stdin can be the output of another program
– E.g., stdout can be the input to another program

4

Example Stdio Functions on Streams

•FILE *fopen(“myfile.txt”, “r”)
o Open the named file and return a stream
o Includes a mode, such as “r” for read or “w” for write

•int fclose(fp1)
o Close the stream
o Flush any unwritten data, and discard any unread input

•int fprintf(fp1, “Number: %d\n”, i)
o Convert and write output to stream in specified format
o Note: printf(…) is just fprintf(stdout, …)

•int fscanf(fp1, “FooBar: %d”, &i)
o Read from stream in format and assign converted values
o Note: scanf(…) is just fscanf(stdint, …)

5

Sequential Access to a Stream
• Each stream has an associated file position
o Starting at beginning of file (if opened to read or write)
o Or, starting at end of file (if opened to append)

• Read/write operations advance the file position
o Allows sequencing through the file in sequential manner

• Support for random access to the stream
o Functions to learn current position and seek to new one

file file

6

Layers of Abstraction

Disk

Driver

Storage

File System

disk blocks

variable-length segments

hierarchical file system

Operating
System

Stdio Library

Appl Prog
User

process FILE * stream

int fd

7

System Calls
• Method by which user processes invoke operating

system services: “protected” function call

• Unix has ~150 system calls; see
o man 2 intro
o /usr/include/syscall.h

File System

Stdio Library

Appl Prog
fopen,fclose, printf,
fgetc, getchar,…

user open, close, read,
write, seekOS

8

System Calls
• Processor modes
o User mode: can execute normal instructions and

access only user memory
o Supervisor mode: can also execute privileged

instructions and access all of memory (e.g., devices)

• System calls
o User cannot execute privileged instructions

– Users must ask OS to execute them
o System calls are often implemented using traps

– OS gains control through trap, switches to supervisor
model, performs service, switches back to user
mode, and gives control back to user

9

System-call Interface = ADTs
ADT

operations

• File input/output
o open, close, read, write, lseek, dup

• Process control
o fork, exit, wait, kill, exec, ...

• Interprocess communication
o pipe, socket ...

10

Details of FILE in stdio.h (K&R 8.5)
#define OPEN_MAX 20 /* max files open at once */

typedef struct _iobuf {
int cnt; /* num chars left in buffer */
char *ptr; /* ptr to next char in buffer */
char *base; /* beginning of buffer */
int flag; /* open mode flags, etc. */
char fd; /* file descriptor */

} FILE;
extern FILE _iob[OPEN_MAX];

#define stdin (&_iob[0])
#define stdout (&_iob[1])
#define stderr (&_iob[2])

11

Main UNIX System Calls for Files
• Open: int open(char *pathname, int flags,
mode_t mode);
o Open a the file pathname and return a file descriptor

• Creat: int creat(char *pathname, mode_t mode);
o Create a new file and assign a file descriptor

• Close: int close(int fd);
o Close a file descriptor fd

• Read: int read(int fd, void *buf, int count);
o Read up to count bytes from fd, into the buffer at buf

• Write: int write(int fd, void *buf, int count);
o Writes up to count bytes into fd, from the buffer at buf

12

Example: UNIX open() System Call
• Converts a path name into a file descriptor
o int open(const char *pathname, int flags,
mode_t mode);

• Similar to fopen() in stdio
o Uses a pathname to identify the file
o Allows opening for reading, writing, etc

• Different from fopen() in stdio
o Returns an integer descriptor rather than a FILE pointer
o Specifies reading, writing, etc. through bit flags

– E.g., O_RDONLY, O_WRONLY, O_RDWR
o Specifies permissions to set if the file must be created

– No need to worry about this (see K&R 8.3 for details)

13

Implementing fopen()in stdio
• If mode is invalid, return NULL
o E.g,. mode of access needs to be ‘r’, ‘w’, or ‘a’

• Search for an available slot in the IOB array
o Stop when unused slot is found, or return NULL if none

• Open or create the file, based on the mode
o Write (‘w’): create file with default permissions
o Read (‘r’): open the file as read-only
o Append (‘a’): open or create file, and seek to the end

• Assign fields in IOB structure, and return pointer
o Cnt of zero, base of NULL, flags based on mode, etc.

See K&R Section 8.5 for the full details

14

Simple Implementation of getchar()
int getchar(void) {

static char c;
if (read(0, &c, 1) == 1)

return c;
else return EOF;

}

• Read one character from stdin
o File descriptor 0 is stdin
o &c points to the buffer
o 1 is the number of bytes to read

• Read returns the number of bytes read
o In this case, 1 byte means success

15

Making getchar() More Efficient
• Problem: poor performance reading byte at a time
o Read system call is accessing the device (e.g., a disk)
o Reading a single byte from a disk is very time consuming
o Insight: better to read and write in larger chunks

• Buffered I/O
o Read a larger chunk of data from disk into a buffer

– And dole individual bytes to user process as needed
– Discard the buffer contents when the stream is closed

o Similarly, for writing, write individual bytes to a buffer
– And write to disk when full, or when stream is closed
– Known as “flushing” the buffer

16

Better getchar() with Buffered I/O
• Solution: read a chunk and dole out as needed

int getchar(void) {
static char buf[1024];
static char *p;
static int n = 0;

if (n--) return *p++;

n = read(0, buf, sizeof(buf));
if (n <= 0) return EOF;
p = buf;
return getchar();

}

17

Funny Thing About Buffered I/O
int main() {

printf(“Step 1\n”);
sleep(10);
printf(“Step2\n”);
return(0);

}

• Try running “a.out > out.txt &” and then “more out.txt”
o To run a.out in the background, outputting to out.txt
o And then to see the contents on out.txt

• Neither line appears till ten seconds have elapsed
o Because the output is being buffered
o Could add a fflush(stdout) to get the output flushed

18

Implementing getc() in stdio
#define getc(p) \

(--(p)->_cnt >= 0 ? \
(int)(*(unsigned char *)(p)->_ptr++) : \
_filbuf(p))

#define getchar() getc(stdin)

• Decrement the count (cnt) of remaining characters

• If any characters are left in the buffer
o Return the character, and increment the pointer to the next character

• Else if no characters are left
o Replenish the buffer, re-initialize the structure, and return character

19

So, Why is getc() a Macro?
• Invented in ~1975, when
o Computers had slow function-call instructions
o Compilers couldn’t inline-expand very well

• It’s not 1975 any more
o Moral: don’t invent new macros, use functions

20

Challenges of Writing
• Write system call
o int write(int fd, void *buf, int count);
o Writes up to count bytes into fd, from the buffer at buf

• Problem: might not write everything
o Can return a number less than count
o E.g., if the file system ran out of space

• Solution: safe_write
o Try again to write the remaining bytes
o Produce an error if it impossible to write more

21

Safe-Write Code
int safe_write(int fd, char *buf, int nbytes)
{

int n;
char *p = buf;
char *q = buf + nbytes;
while (p < q) {

if ((n = write(fd, p, (q-p)*sizeof(char))) > 0)
p += n/sizeof(char);

else
perror(“safe_write:”);

}
return nbytes;

}
p p q

22

Conclusion
• Standard I/O library provides simple abstractions

o Stream as a source or destination of data
o Functions for manipulating files and strings

• Standard I/O library builds on the OS services
o Calls OS-specific system calls for low-level I/O
o Adds features such as buffered I/O and safe writing

• Powerful examples of abstraction
o User programs can interact with streams at a high level
o Standard I/O library deals with some more gory details
o Only the OS deals with the device-specific details

	Standard I/O Library Implementation
	Goals of Today’s Lecture
	Stream Abstraction
	Example Stdio Functions on Streams
	Sequential Access to a Stream
	Layers of Abstraction
	System Calls
	System Calls
	System-call Interface = ADTs
	Details of FILE in stdio.h (K&R 8.5)
	Main UNIX System Calls for Files
	Example: UNIX open() System Call
	Implementing fopen()in stdio
	Simple Implementation of getchar()
	Making getchar() More Efficient
	Better getchar() with Buffered I/O
	Funny Thing About Buffered I/O
	Implementing getc() in stdio
	So, Why is getc() a Macro?
	Challenges of Writing
	Safe-Write Code
	Conclusion

