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Goals of Today’s Lecture
• Computer architecture
o Central processing unit (CPU)
o Fetch-decode-execute cycle
o Memory hierarchy, and other optimization

• Assembly language
o Machine vs. assembly vs. high-level languages
o Motivation for learning assembly language
o Intel Architecture (IA32) assembly language
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Levels of Languages
• Machine language
o What the computer sees and deals with
o Every command is a sequence of one or more numbers

• Assembly language
o Command numbers replaced by letter sequences that 

are easier to read
o Still have to work with the specifics of the machine itself

• High-level language
o Make programming easier by describing operations in a 

natural language
o A single command replaces a group of low-level 

assembly language commands
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Why Learn Assembly Language?
• Understand how things work underneath
o Learn the basic organization of the underlying machine
o Learn how the computer actually runs a program
o Design better computers in the future

• Write faster code (even in high-level language)
o By understanding which high-level constructs are better
o … in terms of how efficient they are at the machine level

• Some software is still written in assembly language
o Code that really needs to run quickly
o Code for embedded systems, network processors, etc.
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A Typical Computer 

CPU

ChipsetMemory

CPU. . .

I/O bus

Network

ROM
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Von Neumann Architecture
• Central Processing Unit
o Control unit

– Fetch, decode, and execute 
o Arithmetic and logic unit

– Execution of low-level operations
o General-purpose registers

– High-speed temporary storage
o Data bus

– Provide access to memory

• Memory
o Store instructions
o Store data

Random Access
Memory (RAM)

Control
Unit

ALU

CPU

Registers

Data bus
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Control Unit
• Instruction pointer
o Stores the location of the next instruction

– Address to use when reading from memory
o Changing the instruction pointer

– Increment by one to go to the next instruction
– Or, load a new value to “jump” to a new location

• Instruction decoder
o Determines what operations need to take place

– Translate the machine-language instruction 
o Control the registers, arithmetic logic unit, and memory

– E.g., control which registers are fed to the ALU
– E.g., enable the ALU to do multiplication
– E.g., read from a particular address in memory
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Example: Kinds of Instructions
• Storing values in registers

o count = 0
o n

• Arithmetic and logic operations
o Increment: count++
o Multiply: n * 3
o Divide: n/2
o Logical AND: n & 1

• Checking results of comparisons 
o while (n > 1)
o if (n & 1)

• Jumping
o To the end of the while loop (if “n > 1”)
o Back to the beginning of the loop
o To the else clause (if “n & 1” is 0)

count = 0;
while (n > 1) {
count++;
if (n & 1)
n = n*3 + 1;

else
n = n/2;

}
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Size of Variables 
• Data types in high-level languages vary in size
o Character: 1 byte
o Short, int, and long: varies, depending on the computer
o Pointers: typically 4 bytes
o Struct: arbitrary size, depending on the elements

• Implications
o Need to be able to store and manipulate in multiple sizes
o Byte (1 byte), word (2 bytes), and extended (4 bytes)
o Separate assembly-language instructions 

– e.g., addb, addw, addl
o Separate ways to access (parts of) a 4-byte register
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Four-Byte Memory Words

Memory

232-131 24  23 16  15 8 7 0

.

.

.

Byte 4
Byte 0

Byte 5
Byte 1Byte 2

Byte 6
Byte 3
Byte 7 0

Byte order is little endian
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IA32 General Purpose Registers

General-purpose registers

EAX
EBX
ECX
EDX
ESI
EDI

31 0 16-bit  32-bit

DI
SI

ALAH
BL
CL
DL

BH
CH
DH

8 715
AX
BX
CX
DX
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Registers for Executing the Code
• Execution control flow
o Instruction pointer (EIP)

– Address in memory of the current instruction
o Flags (EFLAGS)

– Stores the status of operations, such as comparisons
– E.g., last result was positive/negative, was zero, etc.

• Function calls (more on these later!)
o Stack register (ESP)

– Address of the top of the stack
o Base pointer (EBP)

– Address of a particular element on the stack
– Access function parameters and local variables
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Other Registers that you don’t much care about

• Segment registers
o CS, SS, DS, ES, FS, GS

• Floating Point Unit (FPU) (x87)
o Eight 80-bit registers (ST0, …, ST7)
o 16-bit control, status, tag registers
o 11-bit opcode register
o 48-bit FPU instruction pointer, data pointer registers

• MMX
o Eight 64-bit registers

• SSE and SSE2 
o Eight 128-bit registers
o 32-bit MXCRS register

• System
o I/O ports
o Control registers (CR0, …, CR4)
o Memory management registers (GDTR, IDTR, LDTR)
o Debug registers (DR0, …, DR7)
o Machine specific registers
o Machine check registers
o Performance monitor registers
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Reading IA32 Assembly Language
• Assembler directives: starting with a period (“.”)
o E.g., “.section .text” to start the text section of memory
o E.g., “.loop” for the address of an instruction

• Referring to a register: percent size (“%”)
o E.g., “%ecx” or “%eip”

• Referring to a constant: dollar sign (“$”)
o E.g., “$1” for the number 1

• Storing result: typically in the second argument
o E.g. “addl $1, %ecx” increments register ECX 
o E.g., “movl %edx, %eax” moves EDX to EAX

• Comment: pound sign (“#”)
o E.g., “# Purpose: Convert lower to upper case”
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n %edx
count %ecxDetailed Example

movl %edx, %eax
andl $1, %eax
je .else

jmp .endif
.else:

.endif:
sarl $1, %edx

movl %edx, %eax
addl %eax, %edx
addl %eax, %edx
addl $1, %edx

addl $1, %ecx

.loop:
cmpl $1, %edx
jle .endloop

jmp .loop
.endloop:

movl $0, %ecx

count=0;
while (n>1) {
count++;
if (n&1)
n = n*3+1;

else
n = n/2;

}
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Machine-Language Instructions
Instructions have the form

op     source, dest “dest ← dest ⊕ source”

operation  (move, add, subtract, etc.)

first operand (and destination)

second operand
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Machine Language
• Machine language encodes instructions as a sequence of 

integers easily decodable (fast!) by the machine

• Instruction format:

operand operandoperandopcode

Operand specifies what 
data on which to perform 
the operation (register A, 

memory at address B, etc.)

Opcode specifies 
“what operation to 

perform” (add, 
subtract, load, 

jump, etc.)
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Instruction
• Opcode

o What to do

• Source operands
o Immediate (in the instruction itself)
o Register
o Memory location
o I/O port

• Destination operand
o Register
o Memory location
o I/O port

• Assembly syntax
Opcode source1, [source2,] destination
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How Many Instructions to Have?
• Need a certain minimum set of functionality

o Want to be able to represent any computation that can be expressed 
in a higher-level language

• Benefits of having many instructions
o Direct implementation of many key operations
o Represent a line of C in one (or just a few) lines of assembly

• Disadvantages of having many instructions
o Larger opcode size
o More complex logic to implement complex instructions
o Hard to write compilers to exploit all the available instructions
o Hard to optimize the implementation of the CPU
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CISC vs. RISC
Complex Instruction Set Computer

(old fashioned, 1970s style)

Examples: 

Vax (1978-90)

Motorola 68000 (1979-90)

8086/80x86/Pentium (1974-2025)

Instructions of various lengths, 
designed to economize on 
memory (size of instructions)

Reduced Instruction Set Computer

(“modern”, 1980s style)

Examples:

MIPS  (1985-?)

Sparc (1986-2006)

IBM PowerPC (1990-?)

ARM 

Instructions all the same size and 
all the same format, designed to 
economize on decoding 
complexity (and time, and power 
drain)
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Data Transfer Instructions
•mov{b,w,l} source, dest

o General move instruction

•push{w,l} source
pushl %ebx # equivalent instructions

subl $4, %esp
movl %ebx, (%esp)

•pop{w,l} dest
popl %ebx # equivalent instructions

movl (%esp), %ebx
addl $4, %esp

• Many more in Intel manual (volume 2)
o Type conversion, conditional move, exchange, compare and 

exchange, I/O port, string move, etc.

esp
esp

esp
esp
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Data Access Methods
• Immediate addressing: data stored in the instruction itself

o movl $10, %ecx

• Register addressing: data stored in a register
o movl %eax, %ecx

• Direct addressing: address stored in instruction
o movl 2000, %ecx

• Indirect addressing: address stored in a register
o movl (%eax), %ebx

• Base pointer addressing: includes an offset as well
o movl 4(%eax), %ebx

• Indexed addressing: instruction contains base address, and 
specifies an index register and a multiplier (1, 2, or 4)
o movl 2000(,%ecx,1), %ebx
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Effective Address

• Displacement movl foo, %eax

• Base movl (%eax), %ebx

• Base + displacement movl foo(%eax), %ebx
movl 1(%eax), %ebx

• (Index * scale) + displacement movl (,%eax,4), %ebx

• Base + (index * scale) + displacement movl foo(,%eax,4), %ebx

eax
ebx
ecx
edx
esp
ebp
esi
edi

eax
ebx
ecx
edx
esp
ebp
esi
edi

1
2
3
4

+ * +

None

8-bit

16-bit

32-bit

Offset =

Base          Index      scale   displacement  
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Bitwise Logic Instructions
• Simple instructions

and{b,w,l} source, dest dest = source & dest
or{b,w,l} source, dest dest = source | dest
xor{b,w,l} source, dest dest = source ^ dest
not{b,w,l} dest dest = ^dest
sal{b,w,l} source, dest (arithmetic) dest = dest << source
sar{b,w,l} source, dest (arithmetic) dest = dest >> source

• Many more in Intel Manual (volume 2)
o Logic shift
o Rotation shift
o Bit scan 
o Bit test
o Byte set on conditions
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Arithmetic Instructions
• Simple instructions

o add{b,w,l} source, dest dest = source + dest
o sub{b,w,l} source, dest dest = dest – source
o inc(b,w,l} dest dest = dest + 1
o dec{b,w,l} dest dest = dest – 1
o neg(b,w,l} dest dest = ^dest
o cmp{b,w,l} source1, source2 source2 – source1

• Multiply
o mul (unsigned) or imul (signed)
mull %ebx # edx, eax = eax * ebx

• Divide
o div (unsigned) or idiv (signed)
idiv %ebx # edx = edx,eax / ebx

• Many more in Intel manual (volume 2)
o adc, sbb, decimal arithmetic instructions
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EFLAG Register &   Condition Codes

C
F1P

F0A
F0Z

F
S
F

T
F

I
F

D
F

O
F

IO
P
L

N
T0R

F
V
M

A
C

V
I
F

V
I
P

I
DReserved (set to 0)

012345678910111213141516171819202131                                                 22

Carry flag

Identification flag
Virtual interrupt pending
Virtual interrupt flag
Alignment check
Virtual 8086 mode
Resume flag
Nested task flag
I/O privilege level
Overflow flag

Interrupt enable flag
Direction flag

Trap flag
Sign flag
Zero flag
Auxiliary carry flag or adjust flag
Parity flag
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Branch Instructions
• Conditional jump

o j{l,g,e,ne,...} target if (condition) {eip = target}

• Unconditional jump
o jmp target
o jmp *register

Comparison Signed Unsigned
= e e

ne
a
ae
b
be
c

nc

“equal”
≠ ne “not equal”
> g “greater,above”

≥ ge “...-or-equal”
< l “less,below”
≤ le “...-or-equal”

overflow/carry o
no ovf/carry no
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Making the Computer Faster
• Memory hierarchy

o Ranging from small, fast storage to large, slow storage
o E.g., registers, caches, main memory, disk, CDROM, …

• Sophisticated logic units
o Have dedicated logic units for specialized functions
o E.g., right/left shifting, floating-point operations, graphics, network,…

• Pipelining
o Overlap the fetch-decode-execute process
o E.g., execute instruction i, while decoding i-1, and fetching i-2

• Branch prediction
o Guess which way a branch will go to avoid stalling the pipeline
o E.g., assume the “for loop” condition will be true, and keep going

• And so on… see the Computer Architecture class!
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Memory Hierarchy
Capacity Access time

Register: 1x102 bytes

L1 cache: 2-4x104 bytes

105 bytes L2 cache: ~10x

L3 cache: ~50x106 bytes

DRAM: ~200-500x109 bytes

Disks: ~30M x1011 bytes

CD-ROM Jukebox: >1000M x1012 bytes
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Conclusion
• Computer architecture

o Central Processing Unit (CPU) and Random Access Memory (RAM)
o Fetch-decode-execute cycle
o Instruction set

• Assembly language
o Machine language represented with handy mnemonics
o Example of the IA-32 assembly language

• Next time
o Portions of memory: data, bss, text, stack, etc.
o Function calls, and manipulating contents of the stack
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