
1

Computer Architecture
and Assembly Language

COS 217

2

Goals of Today’s Lecture
• Computer architecture
o Central processing unit (CPU)
o Fetch-decode-execute cycle
o Memory hierarchy, and other optimization

• Assembly language
o Machine vs. assembly vs. high-level languages
o Motivation for learning assembly language
o Intel Architecture (IA32) assembly language

3

Levels of Languages
• Machine language
o What the computer sees and deals with
o Every command is a sequence of one or more numbers

• Assembly language
o Command numbers replaced by letter sequences that

are easier to read
o Still have to work with the specifics of the machine itself

• High-level language
o Make programming easier by describing operations in a

natural language
o A single command replaces a group of low-level

assembly language commands

4

Why Learn Assembly Language?
• Understand how things work underneath
o Learn the basic organization of the underlying machine
o Learn how the computer actually runs a program
o Design better computers in the future

• Write faster code (even in high-level language)
o By understanding which high-level constructs are better
o … in terms of how efficient they are at the machine level

• Some software is still written in assembly language
o Code that really needs to run quickly
o Code for embedded systems, network processors, etc.

5

A Typical Computer

CPU

ChipsetMemory

CPU. . .

I/O bus

Network

ROM

6

Von Neumann Architecture
• Central Processing Unit
o Control unit

– Fetch, decode, and execute
o Arithmetic and logic unit

– Execution of low-level operations
o General-purpose registers

– High-speed temporary storage
o Data bus

– Provide access to memory

• Memory
o Store instructions
o Store data

Random Access
Memory (RAM)

Control
Unit

ALU

CPU

Registers

Data bus

7

Control Unit
• Instruction pointer
o Stores the location of the next instruction

– Address to use when reading from memory
o Changing the instruction pointer

– Increment by one to go to the next instruction
– Or, load a new value to “jump” to a new location

• Instruction decoder
o Determines what operations need to take place

– Translate the machine-language instruction
o Control the registers, arithmetic logic unit, and memory

– E.g., control which registers are fed to the ALU
– E.g., enable the ALU to do multiplication
– E.g., read from a particular address in memory

8

Example: Kinds of Instructions
• Storing values in registers

o count = 0
o n

• Arithmetic and logic operations
o Increment: count++
o Multiply: n * 3
o Divide: n/2
o Logical AND: n & 1

• Checking results of comparisons
o while (n > 1)
o if (n & 1)

• Jumping
o To the end of the while loop (if “n > 1”)
o Back to the beginning of the loop
o To the else clause (if “n & 1” is 0)

count = 0;
while (n > 1) {
count++;
if (n & 1)
n = n*3 + 1;

else
n = n/2;

}

9

Size of Variables
• Data types in high-level languages vary in size
o Character: 1 byte
o Short, int, and long: varies, depending on the computer
o Pointers: typically 4 bytes
o Struct: arbitrary size, depending on the elements

• Implications
o Need to be able to store and manipulate in multiple sizes
o Byte (1 byte), word (2 bytes), and extended (4 bytes)
o Separate assembly-language instructions

– e.g., addb, addw, addl
o Separate ways to access (parts of) a 4-byte register

10

Four-Byte Memory Words

Memory

232-131 24 23 16 15 8 7 0

.

.

.

Byte 4
Byte 0

Byte 5
Byte 1Byte 2

Byte 6
Byte 3
Byte 7 0

Byte order is little endian

11

IA32 General Purpose Registers

General-purpose registers

EAX
EBX
ECX
EDX
ESI
EDI

31 0 16-bit 32-bit

DI
SI

ALAH
BL
CL
DL

BH
CH
DH

8 715
AX
BX
CX
DX

12

Registers for Executing the Code
• Execution control flow
o Instruction pointer (EIP)

– Address in memory of the current instruction
o Flags (EFLAGS)

– Stores the status of operations, such as comparisons
– E.g., last result was positive/negative, was zero, etc.

• Function calls (more on these later!)
o Stack register (ESP)

– Address of the top of the stack
o Base pointer (EBP)

– Address of a particular element on the stack
– Access function parameters and local variables

13

Other Registers that you don’t much care about

• Segment registers
o CS, SS, DS, ES, FS, GS

• Floating Point Unit (FPU) (x87)
o Eight 80-bit registers (ST0, …, ST7)
o 16-bit control, status, tag registers
o 11-bit opcode register
o 48-bit FPU instruction pointer, data pointer registers

• MMX
o Eight 64-bit registers

• SSE and SSE2
o Eight 128-bit registers
o 32-bit MXCRS register

• System
o I/O ports
o Control registers (CR0, …, CR4)
o Memory management registers (GDTR, IDTR, LDTR)
o Debug registers (DR0, …, DR7)
o Machine specific registers
o Machine check registers
o Performance monitor registers

14

Reading IA32 Assembly Language
• Assembler directives: starting with a period (“.”)
o E.g., “.section .text” to start the text section of memory
o E.g., “.loop” for the address of an instruction

• Referring to a register: percent size (“%”)
o E.g., “%ecx” or “%eip”

• Referring to a constant: dollar sign (“$”)
o E.g., “$1” for the number 1

• Storing result: typically in the second argument
o E.g. “addl $1, %ecx” increments register ECX
o E.g., “movl %edx, %eax” moves EDX to EAX

• Comment: pound sign (“#”)
o E.g., “# Purpose: Convert lower to upper case”

15

n %edx
count %ecxDetailed Example

movl %edx, %eax
andl $1, %eax
je .else

jmp .endif
.else:

.endif:
sarl $1, %edx

movl %edx, %eax
addl %eax, %edx
addl %eax, %edx
addl $1, %edx

addl $1, %ecx

.loop:
cmpl $1, %edx
jle .endloop

jmp .loop
.endloop:

movl $0, %ecx

count=0;
while (n>1) {
count++;
if (n&1)
n = n*3+1;

else
n = n/2;

}

16

Machine-Language Instructions
Instructions have the form

op source, dest “dest ← dest ⊕ source”

operation (move, add, subtract, etc.)

first operand (and destination)

second operand

17

Machine Language
• Machine language encodes instructions as a sequence of

integers easily decodable (fast!) by the machine

• Instruction format:

operand operandoperandopcode

Operand specifies what
data on which to perform
the operation (register A,

memory at address B, etc.)

Opcode specifies
“what operation to

perform” (add,
subtract, load,

jump, etc.)

18

Instruction
• Opcode

o What to do

• Source operands
o Immediate (in the instruction itself)
o Register
o Memory location
o I/O port

• Destination operand
o Register
o Memory location
o I/O port

• Assembly syntax
Opcode source1, [source2,] destination

19

How Many Instructions to Have?
• Need a certain minimum set of functionality

o Want to be able to represent any computation that can be expressed
in a higher-level language

• Benefits of having many instructions
o Direct implementation of many key operations
o Represent a line of C in one (or just a few) lines of assembly

• Disadvantages of having many instructions
o Larger opcode size
o More complex logic to implement complex instructions
o Hard to write compilers to exploit all the available instructions
o Hard to optimize the implementation of the CPU

20

CISC vs. RISC
Complex Instruction Set Computer

(old fashioned, 1970s style)

Examples:

Vax (1978-90)

Motorola 68000 (1979-90)

8086/80x86/Pentium (1974-2025)

Instructions of various lengths,
designed to economize on
memory (size of instructions)

Reduced Instruction Set Computer

(“modern”, 1980s style)

Examples:

MIPS (1985-?)

Sparc (1986-2006)

IBM PowerPC (1990-?)

ARM

Instructions all the same size and
all the same format, designed to
economize on decoding
complexity (and time, and power
drain)

21

Data Transfer Instructions
•mov{b,w,l} source, dest

o General move instruction

•push{w,l} source
pushl %ebx # equivalent instructions

subl $4, %esp
movl %ebx, (%esp)

•pop{w,l} dest
popl %ebx # equivalent instructions

movl (%esp), %ebx
addl $4, %esp

• Many more in Intel manual (volume 2)
o Type conversion, conditional move, exchange, compare and

exchange, I/O port, string move, etc.

esp
esp

esp
esp

22

Data Access Methods
• Immediate addressing: data stored in the instruction itself

o movl $10, %ecx

• Register addressing: data stored in a register
o movl %eax, %ecx

• Direct addressing: address stored in instruction
o movl 2000, %ecx

• Indirect addressing: address stored in a register
o movl (%eax), %ebx

• Base pointer addressing: includes an offset as well
o movl 4(%eax), %ebx

• Indexed addressing: instruction contains base address, and
specifies an index register and a multiplier (1, 2, or 4)
o movl 2000(,%ecx,1), %ebx

23

Effective Address

• Displacement movl foo, %eax

• Base movl (%eax), %ebx

• Base + displacement movl foo(%eax), %ebx
movl 1(%eax), %ebx

• (Index * scale) + displacement movl (,%eax,4), %ebx

• Base + (index * scale) + displacement movl foo(,%eax,4), %ebx

eax
ebx
ecx
edx
esp
ebp
esi
edi

eax
ebx
ecx
edx
esp
ebp
esi
edi

1
2
3
4

+ * +

None

8-bit

16-bit

32-bit

Offset =

Base Index scale displacement

24

Bitwise Logic Instructions
• Simple instructions

and{b,w,l} source, dest dest = source & dest
or{b,w,l} source, dest dest = source | dest
xor{b,w,l} source, dest dest = source ^ dest
not{b,w,l} dest dest = ^dest
sal{b,w,l} source, dest (arithmetic) dest = dest << source
sar{b,w,l} source, dest (arithmetic) dest = dest >> source

• Many more in Intel Manual (volume 2)
o Logic shift
o Rotation shift
o Bit scan
o Bit test
o Byte set on conditions

25

Arithmetic Instructions
• Simple instructions

o add{b,w,l} source, dest dest = source + dest
o sub{b,w,l} source, dest dest = dest – source
o inc(b,w,l} dest dest = dest + 1
o dec{b,w,l} dest dest = dest – 1
o neg(b,w,l} dest dest = ^dest
o cmp{b,w,l} source1, source2 source2 – source1

• Multiply
o mul (unsigned) or imul (signed)
mull %ebx # edx, eax = eax * ebx

• Divide
o div (unsigned) or idiv (signed)
idiv %ebx # edx = edx,eax / ebx

• Many more in Intel manual (volume 2)
o adc, sbb, decimal arithmetic instructions

26

EFLAG Register & Condition Codes

C
F1P

F0A
F0Z

F
S
F

T
F

I
F

D
F

O
F

IO
P
L

N
T0R

F
V
M

A
C

V
I
F

V
I
P

I
DReserved (set to 0)

012345678910111213141516171819202131 22

Carry flag

Identification flag
Virtual interrupt pending
Virtual interrupt flag
Alignment check
Virtual 8086 mode
Resume flag
Nested task flag
I/O privilege level
Overflow flag

Interrupt enable flag
Direction flag

Trap flag
Sign flag
Zero flag
Auxiliary carry flag or adjust flag
Parity flag

27

Branch Instructions
• Conditional jump

o j{l,g,e,ne,...} target if (condition) {eip = target}

• Unconditional jump
o jmp target
o jmp *register

Comparison Signed Unsigned
= e e

ne
a
ae
b
be
c

nc

“equal”
≠ ne “not equal”
> g “greater,above”

≥ ge “...-or-equal”
< l “less,below”
≤ le “...-or-equal”

overflow/carry o
no ovf/carry no

28

Making the Computer Faster
• Memory hierarchy

o Ranging from small, fast storage to large, slow storage
o E.g., registers, caches, main memory, disk, CDROM, …

• Sophisticated logic units
o Have dedicated logic units for specialized functions
o E.g., right/left shifting, floating-point operations, graphics, network,…

• Pipelining
o Overlap the fetch-decode-execute process
o E.g., execute instruction i, while decoding i-1, and fetching i-2

• Branch prediction
o Guess which way a branch will go to avoid stalling the pipeline
o E.g., assume the “for loop” condition will be true, and keep going

• And so on… see the Computer Architecture class!

29

Memory Hierarchy
Capacity Access time

Register: 1x102 bytes

L1 cache: 2-4x104 bytes

105 bytes L2 cache: ~10x

L3 cache: ~50x106 bytes

DRAM: ~200-500x109 bytes

Disks: ~30M x1011 bytes

CD-ROM Jukebox: >1000M x1012 bytes

30

Conclusion
• Computer architecture

o Central Processing Unit (CPU) and Random Access Memory (RAM)
o Fetch-decode-execute cycle
o Instruction set

• Assembly language
o Machine language represented with handy mnemonics
o Example of the IA-32 assembly language

• Next time
o Portions of memory: data, bss, text, stack, etc.
o Function calls, and manipulating contents of the stack

	Computer Architecture and Assembly Language
	Goals of Today’s Lecture
	Levels of Languages
	Why Learn Assembly Language?
	A Typical Computer
	Von Neumann Architecture
	Control Unit
	Example: Kinds of Instructions
	Size of Variables
	Four-Byte Memory Words
	IA32 General Purpose Registers
	Registers for Executing the Code
	Other Registers that you don’t much care about
	Reading IA32 Assembly Language
	Detailed Example
	Machine-Language Instructions
	Machine Language
	Instruction
	How Many Instructions to Have?
	CISC vs. RISC
	Data Transfer Instructions
	Data Access Methods
	Effective Address
	Bitwise Logic Instructions
	Arithmetic Instructions
	EFLAG Register & Condition Codes
	Branch Instructions
	Making the Computer Faster
	Memory Hierarchy
	Conclusion

