Binary Numbers

COS 217
Goals of Today’s Lecture

• Binary numbers
 ◦ Why binary?
 ◦ Converting base 10 to base 2
 ◦ Octal and hexadecimal

• Integers
 ◦ Unsigned integers
 ◦ Integer addition
 ◦ Signed integers

• C bit operators
 ◦ And, or, not, and xor
 ◦ Shift-left and shift-right
 ◦ Function for counting the number of 1 bits
 ◦ Function for XOR encryption of a message
Why Bits (Binary Digits)?

- Computers are built using digital circuits
 - Inputs and outputs can have only two values
 - True (high voltage) or false (low voltage)
 - Represented as 1 and 0

- Can represent many kinds of information
 - Boolean (true or false)
 - Numbers (23, 79, …)
 - Characters (‘a’, ‘z’, …)
 - Pixels
 - Sound

- Can manipulate in many ways
 - Read and write
 - Logical operations
 - Arithmetic
 - …
Base 10 and Base 2

• Base 10
 ◦ Each digit represents a power of 10
 ◦ \(4173 = 4 \times 10^3 + 1 \times 10^2 + 7 \times 10^1 + 3 \times 10^0\)

• Base 2
 ◦ Each bit represents a power of 2
 ◦ \(10110 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = 22\)

 Divide repeatedly by 2 and keep remainders

 \[
 \begin{align*}
 12/2 &= 6 & R = 0 \\
 6/2 &= 3 & R = 0 \\
 3/2 &= 1 & R = 1 \\
 1/2 &= 0 & R = 1 \\
 \end{align*}
 \]

 Result = \(1100\)
Writing Bits is Tedious for People

- Octal (base 8)
 - Digits 0, 1, …, 7
 - In C: 00, 01, …, 07

- Hexadecimal (base 16)
 - Digits 0, 1, …, 9, A, B, C, D, E, F
 - In C: 0x0, 0x1, …, 0xf

<table>
<thead>
<tr>
<th>Binary</th>
<th>Octal</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0x0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>0x1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>0x2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>0x3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>0x4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>0x5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>0x6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>0x7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>0x8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>0x9</td>
</tr>
<tr>
<td>1010</td>
<td>A</td>
<td>0xA</td>
</tr>
<tr>
<td>1011</td>
<td>B</td>
<td>0xB</td>
</tr>
<tr>
<td>1100</td>
<td>C</td>
<td>0xC</td>
</tr>
<tr>
<td>1101</td>
<td>D</td>
<td>0xD</td>
</tr>
<tr>
<td>1110</td>
<td>E</td>
<td>0xE</td>
</tr>
<tr>
<td>1111</td>
<td>F</td>
<td>0xF</td>
</tr>
</tbody>
</table>

Thus the 16-bit binary number

1011 0010 1010 1001

converted to hex is

B2A9
Representing Colors: RGB

• Three primary colors
 ◦ Red
 ◦ Green
 ◦ Blue

• Strength
 ◦ 8-bit number for each color (e.g., two hex digits)
 ◦ So, 24 bits to specify a color

• In HTML, on the course Web page
 ◦ Red: <i>Symbol Table Assignment Due</i>
 ◦ Blue: <i>Fall Recess</i>

• Same thing in digital cameras
 ◦ Each pixel is a mixture of red, green, and blue
Storing Integers on the Computer

• Fixed number of bits in memory
 ◦ Short: usually 16 bits
 ◦ Int: 16 or 32 bits
 ◦ Long: 32 bits

• Unsigned integer
 ◦ No sign bit
 ◦ Always positive or 0
 ◦ All arithmetic is modulo 2^n

• Example of unsigned int
 ◦ 00000001 \rightarrow 1
 ◦ 00001111 \rightarrow 15
 ◦ 00010000 \rightarrow 16
 ◦ 00100001 \rightarrow 33
 ◦ 11111111 \rightarrow 255
Adding Two Integers: Base 10

- From right to left, we add each pair of digits
- We write the sum, and add the carry to the next column

\[
\begin{array}{c}
\text{Sum} & 4 & 6 & 2 \\
\text{Carry} & 0 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{c}
\text{Sum} & 1 & 0 & 0 & 0 \\
\text{Carry} & 0 & 1 & 1 \\
\end{array}
\]
Binary Sums and Carries

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>Sum</th>
<th>a</th>
<th>b</th>
<th>Carry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

XOR

| 0100 | 0101 | 69 |
| 0110 | 0111 | 103 |
+------|------|----|
| 0110 0111 | | 172 |
| 1010 1100 | | |
Modulo Arithmetic

- Consider only numbers in a range
 - E.g., five-digit car odometer: 0, 1, …, 99999
 - E.g., eight-bit numbers 0, 1, …, 255

- Roll-over when you run out of space
 - E.g., car odometer goes from 99999 to 0, 1, …
 - E.g., eight-bit number goes from 255 to 0, 1, …

- Adding 2^n doesn’t change the answer
 - For eight-bit number, n=8 and $2^n=256$
 - E.g., $(37 + 256) \mod 256$ is simply 27

- This can help us do subtraction…
 - Suppose you want to compute $a - b$
 - Note that this equals $a + (256 - 1 - b) + 1$
One’s and Two’s Complement

• One’s complement: flip every bit
 ◦ E.g., b is 01000101 (i.e., 69 in base 10)
 ◦ One’s complement is 10111010
 ◦ That’s simply 255-69

• Subtracting from 11111111 is easy (no carry needed!)

\[
\begin{array}{c}
11111111 \\
- 01000101 \\
\hline
10111010 \\
\end{array}
\]

b

one’s complement

• Two’s complement
 ◦ Add 1 to the one’s complement
 ◦ E.g., \((255 - 69) + 1 \Rightarrow 1011 1011\)
Putting it All Together

• Computing “a – b” for unsigned integers
 ◦ Same as “a + 256 – b”
 ◦ Same as “a + (255 – b) + 1”
 ◦ Same as “a + onecomplement(b) + 1”
 ◦ Same as “a + twocomplement(b)”

• Example: 172 – 69
 ◦ The original number 69: 0100 0101
 ◦ One’s complement of 69: 1011 1010
 ◦ Two’s complement of 69: 1011 1011
 ◦ Add to the number 172: 1010 1100
 ◦ The sum comes to: 0110 0111
 ◦ Equals: 103 in base 10

\[
\begin{array}{c}
1010 1100 \\
+ 1011 1011 \\
\hline
1 0110 0111
\end{array}
\]
Signed Integers

• Sign-magnitude representation
 ◦ Use one bit to store the sign
 – Zero for positive number
 – One for negative number
 ◦ Examples
 – E.g., 0010 1100 ➔ 44
 – E.g., 1010 1100 ➔ -44
 ◦ Hard to do arithmetic this way, so it is rarely used

• Complement representation
 ◦ One’s complement
 – Flip every bit
 – E.g., 1101 0011 ➔ -44
 ◦ Two’s complement
 – Flip every bit, then add 1
 – E.g., 1101 0100 ➔ -44
Overflow: Running Out of Room

• **Adding two large integers together**
 - Sum might be too large to store in the number of bits allowed
 - What happens?

• **Unsigned numbers**
 - All arithmetic is “modulo” arithmetic
 - Sum would just wrap around

• **Signed integers**
 - Can get nonsense values
 - Example with 16-bit integers
 - Sum: 10000+20000+30000
 - Result: -5536
 - In this case, fixable by using “long”…
Bitwise Operators: AND and OR

- **Bitwise AND (&)**

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

 - Mod on the cheap!
 - E.g., \(h = 53 \& 15; \)

- **Bitwise OR (|)**

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

  ```plaintext
  53 0 0 1 1 0 1 0 1
  \& 15 0 0 0 0 1 1 1 1
  ---------------------
  5 0 0 0 0 0 1 0 1
  ```
Bitwise Operators: Not and XOR

• One’s complement (~)
 ◦ Turns 0 to 1, and 1 to 0
 ◦ E.g., set last three bits to 0
 – \(x = x \& \sim 7; \)

• XOR (^)
 ◦ 0 if both bits are the same
 ◦ 1 if the two bits are different

\[
\begin{array}{ccc}
^ & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
\]
Bitwise Operators: Shift Left/Right

• Shift left (<<): Multiply by powers of 2
 ○ Shift some # of bits to the left, filling the blanks with 0

 $53 \ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 0$

 $53<<2 \ 1\ 1\ 0\ 1\ 0\ 0\ 0\ 0$

• Shift right (>>): Divide by powers of 2
 ○ Shift some # of bits to the right
 – For unsigned integer, fill in blanks with 0
 – What about signed integers? Varies across machines…
 • Can vary from one machine to another!

 $53 \ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 0$

 $53>>2 \ 0\ 0\ 0\ 0\ 1\ 1\ 0\ 1$
Count Number of 1s in an Integer

• Function bitcount(unsigned x)
 ◦ Input: unsigned integer
 ◦ Output: number of bits set to 1 in the binary representation of x

• Main idea
 ◦ Isolate the last bit and see if it is equal to 1
 ◦ Shift to the right by one bit, and repeat

```c
int bitcount(unsigned x) {
    int b;
    for (b=0; x!=0; x >>= 1)
        if (x & 01)
            b++;
    return b;
}
```
XOR Encryption

• Program to encrypt text with a key
 ◦ Input: original text in stdin
 ◦ Output: encrypted text in stdout

• Use the same program to decrypt text with a key
 ◦ Input: encrypted text in stdin
 ◦ Output: original text in stdout

• Basic idea
 ◦ Start with a key, some 8-bit number (e.g., 0110 0111)
 ◦ Do an operation that can be inverted
 – E.g., XOR each character with the 8-bit number

\[
\begin{align*}
0100 & \quad 0101 & & \quad 0010 & \quad 0010 \\
\wedge & \quad 0110 & \quad 0111 & & \wedge & \quad 0110 & \quad 0111 \\
\hline
0010 & \quad 0010 & & \quad 0100 & \quad 0101
\end{align*}
\]
XOR Encryption, Continued

• But, we have a problem
 ◦ Some characters are control characters
 ◦ These characters don’t print

• So, let’s play it safe
 ◦ If the encrypted character would be a control character
 ◦ … just print the original, unencrypted character
 ◦ Note: the same thing will happen when decrypting, so we’re okay

• C function `iscntrl()`
 ◦ Returns true if the character is a control character
#define KEY ‘&’

int main() {
 int orig_char, new_char;

 while ((orig_char = getchar()) != EOF) {
 new_char = orig_char ^ KEY;
 if (iscntrl(new_char))
 putchar(orig_char);
 else
 putchar(new_char);
 }
 return 0;
}
Conclusions

- Computer represents everything in binary
 - Integers, floating-point numbers, characters, addresses, …
 - Pixels, sounds, colors, etc.

- Binary arithmetic through logic operations
 - Sum (XOR) and Carry (AND)
 - Two’s complement for subtraction

- Binary operations in C
 - AND, OR, NOT, and XOR
 - Shift left and shift right
 - Useful for efficient and concise code, though sometimes cryptic
Next Week

- **Canceling second precept**
 - Monday/Tuesday precept as usual
 - Canceling the Wednesday/Thursday precept due to midterms

- **Thursday lecture time**
 - Midterm exam
 - Open book and open notes
 - Practice exams online