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locafity of interaction. 1 would mot like sp think of & very emormous
compuier with arbitrary interconneciions throughout the entire thing.

Maw, whint kind of physics are we going to imitase? First, | am going 1o
describe ihe possibility of simulating physics in the classical approxmaton,
& ihing which is usually described by local differential equations. But the
physical workd is quantum mechanical, and therefore the proper profhlem is
ihe simalatbon of quaniam physics—which is what | reslly wani io lalk
aboul, but Il came 1o that laer. So what kind of amalation do 1 mean?
There is, of course, a kind al approumaie simulabon in which you design
numerical algorihms for differential equaisons, and then wse the compuier
io compuie these algorithms and gel an approximade view of whai physics
ought o do. That's an interesting subject, bud is not what 1 want 1o talk
about. [ want to lalk abowl ibe possibility ihal ibere is 10 be an exoer
simulation, thai ibe compuater will do exacily the same as naiwre. If this s o
be proved and the type of computer is &s I've already explained, then it's
going o be necessary thai coeryrhing thai happens in a findie volume of
apaie and Ume would have 1o be exactly analyzable with a finble sumber of
logical operatbons. The present theory of phiysics 15 ol that way, appanently.
[ allows space w go down inio infiniiesimal distamces, wavelengths 1o gel
inficitely great, terms to be summed in infinile order, and so forth; and
therefore, if this propasition is right, physical law is wrong,

S0 good, we already hawe s suggestion of how we mighi modily
physical law, and (hat &8 the kind of reason why 1 lke 0 stady this sort of
problem. To take an example, we might change the idea thar space is
continuous to the idea thal space perhaps is & simpde lantice and everything
18 digerete (50 thal we can pul il imlo & faite oumber of digits) and that Eme
Jumps discontinuously. Mow bet's soc whal kind of & physcal world it would
be ar what kind of problem of computation we would bave. For example,
the first difficulry that would come out is that the speed of light would
depend slightly an the direciion, and there might be other anisotropies in
the physics that we could detect experimentally. They might be very small
andsolropics. Physcal knowladge (3 of course always incomplele, and you
can always say we'll iry wo design something which beats experiment a1 the
present time, but which predicts anisiropies on some scale io be foand later,
That's fine. That would be good physics if you could predict something
consislent with all ike known [ecis and suggest some new Esed thai we didn®i
cxplaim, bud 1 have no specific cxamples. S0 I'm mou objecting w ihe e
that ir's anistropic in principle, iCs & questbon of bow anistropie. I you el
me ir's so-and-so amistrophe, 1T Gl you about the experiment with ike
linkiisim atosn which shows that (he mnistropy i less than that much, snd
ihat ihis here ibsory of yours is impossihle.

I
urrmﬂmltn._.__._.?llt.

e
Another thing that had been suggesied early was that natural liws are
reversible, bul that computer nales are not. But this wumed cul io be false;
the computer rules can be reversible, and il has been & very, very uscful
thing to motice and 10 discover that. (Editors’ note: see papers by Bennet,
Fredkin, and Toffoli, these Proceedings). This is a place where the relation-
ship of physics and computsiion has iwrned itsell the other way and (old us
something aboul the possibilities of compuiation. 5o this is an inleresting
suhject becawss it tells us somelbdng abowt compuier rules, and might Lell us
something about physics.

The rule of simulation that [ would like to have is thai ibe number of
computer elemenis required 1o simulaie a large physical system i only 10 be
proponiional 1o the space-time volume of the physical system. 1 doa’t wanl
10 have an explosion. Thiat ix, if you say | want o explain this much physics,
I can do it exacily and 1 nesd & certain-sized compater. Il doubling the
volume of space and time means Il meed an expomentiolly larger Comguier,
| comsider that againit the rules (I make up the nules, I'm allowed 1w do
thath. Let's start with & few ineresting questions,

L SIMULATIMG TIME

First I"d like io ialk sbowl smulating Gme. We'ne poing b assume il's
discrete. Yo know that we dom't hove infinite EEEEﬁQ:E mea-
surements so lime might be discrete on a scale of less than 107" sec. (You'd
have bo bave it &t leasi like (o this o avoid clashes with expenmenl— bul
make it 107" sec. il you like, and then you've got us!)

Oine way in which we simulate time— in celluler auicmaia, for example
—is 1o say that = the computer goss from state 1o stete.” But really, that's
using intaition that involves the ides of time—you're going from siate o
state. And (herefore the time (by the way, ke the space in ihe case of
cellular automaia) is not simubyied ai gll, §t's imitated in the compisler.

An interesting question comes up: “Is there 8 way ol simulating it,
puther than imitating {7 'Well, ibere's a wiy of looking ai the world that i
called the space-lime view, imagining that the points of space and time are
all laid ocwl, so to speak, ahead of time. And then we could say that a
“compwier” rule (now compaier would be in quotes, because il's not the
slandard kind of compuber which operaies in time) is: We hiave a SlaLe 5, a1
cach poind § is space-time. (See Figure 1) The stale 5 an the space Lme
poant i is & gaven function (s, 5;,...) of the siate at the points 3, & in some
neighborhood of i:

3= Flapsyse-)
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. mentioned) 1o computer simulation. We have no difficalty, In principle,
. apparently, with that.
pace 3. SIMULATING PROBABILITY
™ Turnang to quanium mechanics, we know immediately thal here we get
You'll notice immediately that if this particular function is such thai the .E__u_n_uﬂ ._r_.E.._.u___. .i____uﬂn._u__._E___Ein r_ﬂﬂﬁ_“_-nﬂ..f_.._ﬁ__—z h-_.”a_,:”q..“
vilue of the lanction at / anly involves the few poiis behind in time, carkier ey, so that you really o B bl L
than this time i, all Tve dose is 1o redescribe the cellulsr automaton, NG MENL SHIOIS SO S, AN S S, 1 . St O
beecauase it qﬂ!-. caley given pain . difficulty im understanding the world view quantum mechanics repre-
Ei_ﬂﬂﬁiﬂﬂigﬁﬁnﬁ Lﬂuﬂ_:u!n...m_l!r sents. Ad leasi | do, because I'm an old emough man thal | heven't got 1o the
n ihat particular arder. But just let's EEE.E hhmﬂi:gi polnt thal this stil & strvioms i: mee. Uy, § ot ot stk Rl 4. And
Coipnda, Bicmi e SR artnx: el ol D A A farsioce, soma of e younger widcnts ... JOu mow how it abenys &,
bl EIEE-:&HREEQEEE | every mew ided, il takes a gencratbon or two until it becomes obvious thal
of points in space-time. Il F depends on a¥f the points bath i tse future and s i L S Al e e
the past, what then? That could be ihe way physics works. I'll mention how uiiiﬂrﬂﬂiﬁlihuiugﬁwnﬁﬂﬁﬂa
J | prohlem, bui I'm mode sare 'S ma problem. ¥ -
ﬂﬁnﬂnﬂlﬁ"%rﬂ IBHEHEEH__!E_EIE_E 10 imvestigate things. Can [ learn anything from asking this question aboul
thing— by imagining positrons &s clecsrons E!Eh ﬂﬂx_ E:E-Indﬂngﬁiﬂ!:nﬂfﬂuﬂluﬂﬂiﬂui
EEEE?F’EEE%E PR ik s et byt e gt G g
question would be, if this computer were laid out, is Enui__hﬁh | lowchve probablity—snd [ thorcless want 1o talk showt smwlating pecbs-
H hility.
arganized algorithen by whach a E__-_m_IHﬂE?.I_.ir._.I.FEE.
puted? Suppose you know this function F, and it is & function of the ﬂﬁiﬂdﬁnuﬂwﬁiﬁ Hm!...ﬁEﬂWnan prob-
variables in the fusture s well. How would you lay owt _..H-i.n.-u_ﬁ:__ru.- abalistic theary, someihing probabikity im il, wos odlowlate
automatically satisfy the sbove equation? It may nat be possible, In the case the probability and then interpret this mumber to represent nature, For
al the cellular auiomaton it is, because from a given row you get the pext exsmple, let's sappose that & particle has » probability P(x, 1) tobest xata
Kime ¢, ____,:u.EEiﬂ.___a.mu.ﬁr iﬁwn____mrqﬂir -.E_J__ A differemiial

raw and thes the nest row, and there’s an arganized way of doing it. 1i% an articde is diffusing:
interesting question whether (bere are circumstances where you gei func- o i PN i

tions for which you can't think, at least right away, of an organized way of
lnying it cul. Maybe sort of shake it down from some approximation, ar wm.hLHf v 3P(x,1)
someihing, bud it's an interesting different (ype of computation.
Question: “Doesa't this reduce 1o the ordinary boundary value, as Mow we could discretize ¢ and & and perbaps even the probabilicy iself and
oppased to initisl-value type of caloalation ™ sohve this differential equation like we salve any ald fedd equatios, and
Answer: “Yes, but remember this is the computer asell that I'm make an algorithm for i, Ergﬂgaﬁﬂi&lﬁnf
describing. ™ a problem sboul discretizing probability. 1 wil.n....lu-ﬁ.ﬁ—:i
It appears sctaslly that classical pysics is causal. You can, in terms of digits it would mean 1hat when the probability is less thai 2% of something

6 information in the pasi, if you include both mamentum and posilson, of bappening, you say il docsn't happen at all. In praciice we do thal If the
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probability of something is 107™, we say it isn"t going to happen, and
we're not caught out very often. So we could allow ourselves 1o do that., But
the real difficulty is this: Il we had many particles, we have R particles, for
example, in a system, then we would have to describe the probability of a
circumsiance by giving the probability to find these particles at points
Xy X3,.--,Xg 8l the time £, That would be a description of the probability of
the system. And therefore, you'd need a k-digit number for every configura-
ton of the system, for every arrangement of the R values of x. And
therefore if there are N points in space, we'd need N*® configurations.
Actually, from our point of view that at each point in space there is
information like electric fields and s0 on, B will be of the same order as N il
the number of information bits is the same as the number of points in space,
and therefore you'd have to have something like N configurations to be
described 1o get the probability out, and that's oo big for our computer to
hold if the size of the computer is of order N.

We emphasize, if a description of an isolaled part of nature with N
vanables requires a general function of N variables and if a computer
stimulates this by actually computing or storing this function then doubling
the size of nature (N—+2N) would require an exponentially explosive
growth in the size of the simulating computer. It is therefore impossible,
according io the rules stated, to simulate by caleulating the probability.

Is there any other way? What kind of simulation can we have? We can't
expect to compute the probability of configurations for a probabilistic
theory, But the other way to simulaie a probabilistic nature, which Tl eall
. for the moment, might still be 1o simulate the probabilistic nature by a
computer & which itself is probabilistic, in which you always randomize the
last two digit's of every number, or you do something terrible 1o it. So it
becomes what I'll call a probabilistic computer, in which the output is not a
unique function of the input. And then you try to work it out so that it
simulates nature in this sense: that € goes from some stale—initial state if
you like—to some final state with the some probability that . goes from
the corresponding initial state to the corresponding final state. Of course
when you set up the machine and let nature do it, the imitator will not do
the same thing, it only does it with the same probability. Is that no good?
No it's 0.K. How do you know what the probability is? You see, nature's
unpredictable; how do you expect to predict it with a computer? You can’t,
—it's unpredictable if it's probabilistic. But what you really do in a
probabilistic system is repeat the experiment in nature a large number of
times. I you repeat the same experiment in the computer a large number of
times (and that doesn't take any more lime than it does to do the same thing
in nature of course), it will give the frequency of a given final stale
proportional to the number of times, with approximately the same rate (plus
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or minus the square rool of n and all that) as it happens in nature. In other
words, we could imagine and be perfectly happy, I think, with a probabilis-
lic simulator of a probabilistic nature, in which the machine doesn't exacily
do what nawre does, but if you repeated a particular type of experiment a
sufficient number of times to detérmine nature’s probability, then you did
the corresponding experiment on the computer, you'd gel the corresponding
probability with the corresponding accuracy (with the same kind of accu-
racy of stalistics).

So let us now think about the characteristics of a local probabilistic
computer, because I'll see if I can imitate nature with that (by “nature™ ['m
now going Lo mean quantum mechanics). One of the characteristics is that
you can determine how it behaves in a local region by simply disregarding
what it's doing in all other regions. For example, suppose there are variables
in the system that describe the whole world (x,, xg)—1the variables x,
you're interested in, they're “around here™; x, are the whole result of the
world. If you want to know the probability that something around here is
happening, you would have to get that by integrating the total probability of
all kinds of possibilities over x,. If we had computed this probability, we
would still have to do the integration

h._“n.___u__n.‘..t_”u.._,rq.-_..nn.-_

which is a hard job! But if we have imitated the probability, it’s very simple
to do it: you don't have to do anything to do the integration, you simply
disregard what the values of x; are, you just look al the region x,. And
therefore it does have the characteristic of nature: if it’s local, you can find
out what's happening in a region not by integrating or doing an extra
operation, but merely by disregarding what happens elsewhere, which is no
operation, nothing at all.

The other aspect that I want to emphasize is that the equations will
have a form, no doubl, something like the following. Let each point
i=12,...,N in space be in a stale 5, chosen from a small state set (the size
of this set should be reasonable, say, up to 2*). And let the probability 1o
find some configuration {1;} (a set of values of the state 5; at each point i)
be some number F{{s,]). It satisfies an equation such that at each jump in
time

PaillN= 3 [Mm(sils)5i...) | PL))
=L

where m(s,|s/, 5i...) is the probability that we move to state 5, at point i
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when the neighbors have values 8, 5., where j, k etc, are poinis in the
neighborhood of /. As j moves far from i, m becomes ever less sensitive to
5. Al each change the slale al a particular point i will move from what it
Was 10 @ state 5 with a probability m that depends only upon the states of
the neighborhood (which may be so defined as to include the point 7 itself).
This gives the probability of making a transition. [t's the same 25 in a
cellular automaton; only, instead of its being definite, it's a probability. Tell
me the environment, and I'll tell you the probability after a next moment of
time that this point is at state 5. And that's the way it's going to work, okay?
So you get a mathematical equation of this kind of form.

Now 1 explicitly go to the question of how we can simulate with a
compuler—a universal auiomaion or something— the quantum-mechanical
effects. (The usual formulation is that quantum mechanics has some sort of
a differential equation for a function .) If you have a single particle, fisa
function of x and ¢, and this differential equation could be simulated Jusi
like my probabilistic equation was before, That would be all right and one
has seen people make little computers which simulate the Schriedinger
equation for a single particle. But the full description of quantum mechanics
for a large system with R particles is given by a function WXy, Xy X, 1)
EEEEE?&E@:E&E?&EEEEH. ..... Xy, and therefore,
because it has too many variables, it canmor be simulated with a normal
computer with a number of elements proportional to R or proportional 1o
N. We had the same troubles with the probability in classical physics. And
therefore, the problem is, how can we simulate the quantum mechanics?
There are two ways that we can go about it. We can give up on our rule
about what the computer was, we can say: Let the computer itself be built
of quantum mechanical elements which obey quantum mechanical laws. Or
we can turn the other way and say: Let the computer still be the same kind
that we thought of before—a logical, universal automaton; can we imitate
this situation? And I'm going 1o separate my 1alk here, for it branches into
WO paris.

4. QUANTUM COMPUTERS—UNIVERSAL QUANTUM
SIMULATORS

The first branch, one you might call a side-remark, is, Can you do it
with a new kind of computer—a quantum computer? (T'll come back 1o the
Rrﬂainnru.unaaﬂnnruzg:fﬂﬂrﬂqﬁﬂ_ﬂ:ﬁr__.Eu_a:
can simulate this with a quantum system, with quantum computer elemenis,
It's not a Turing machine, but a machine of a different kind. IT we disregard
ihe continuity of space and make it discrete, and so on, as an approximation
(the same way as we allowed ourselves in the classical case), it does seem to
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be true that all the various field theories have the same kind of behavior,
and can be simulated in every way, apparently, with little latticeworks of
spins and other things. It's been noted time and time again that the
phenomena of field theory (if the world is made in a discrete lattice) are well
imitated by many phenomena in solid state theory (which is simply the
analysis of a latticework of crystal atoms, and in the case of the kind of
solid state I mean each atom is just a point which has numbers associated
with it, with quantum-mechanical rules). For example, the spin waves in a
spin lattice imitating Bose-particles in the field theory. I therefore believe
it's true that with a suitable class of quantum machines you could imitate
any quantum system, including the physical world. But [ dont know
whether the general theory of this intersimulation of quantum sysiems has
ever been worked out, and so | present that as another interesting problem:
1o work out the classes of different kinds of quantum mechanical systems
which are really intersimulatable—which are equivalent—as has been done
in the case of classical computers. It has been found that there is a kind of
universal computer that can do anything, and it doesn't make much
difference specifically how it’s designed. The same way we should iry to find
out what kinds of quantum mechanical systems are mutually intersimulata-
ble, and try to find a specific class, or a character of that class which will
simulate everything. Wha, in other words, is the universal quantum simula-

\ tor? (assuming this discretization of space and time). If you had discrete

quantum systems, what other discrete quantum systems are exact imitators
of it, and is there a class against which everything can be matched? [ believe
i's rather simple 1o answer that question and to find the class, but T just
haven't done it.

Suppose that we try-the following guess: that every finite gquantum
mechanical system can be described exacrly, imitated exactly, by supposing
that we have another sysiem such that at each point in space-time this
sysiem has only two possible base states. Either that point is occupied, of
unoccupicd—those are the two states. The mathematics of the quanium
mechanical operators associated with that point would be very simple.
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~ There .....__m..___"_ be an operator @ which amnihilases if the point is occupied
—it n._..n:u.,nm it to unoccupied. There is a conjugate operator a* which does
the opposite: if it's unoecupied, it occupies it. There's another operatlor
called the __._____H__.n.__. to ask, Is something there? The little mairices tell you
_-___E__. they do. If it’s there, n gets a one and leaves it alone, if it's not there,
nothing happens. That's mathematically equivalent to the product of the
other two, as a matter of fact. And then there's the identity, 1, which we
always have 1o put in there to complete our mathematics— it doesn't do a
damn thing!

By the way, on the right-hand side of the above formulas the same
Operalors are wrillen in terms of matrices that most physicists find more
convenienl, because they are Hermitian, and that seems to make jt easier for
them. They have invented another set of matrices, the Pauli ¢ matrices:

1ok o=(l %) =g ¢

And these are called spin —spin one-half—so sometim people
FFr..qﬂn-vE. a spin-one-half lattice, “ a you're
question is, if we wrote a Hamiltonian which involved only

operators, Eﬂhu_.n&i_& to corresponding operators on the other Euﬂ?ﬁ
points, could we imilate every quantum mechanical system which is discrete
and has a finite number of degrees of freedom? 1 know, almost certainly,
that we could do that for any quantum mechanical system which involves
Bose particles. I'm not sure whether Fermi particles could be described by
such a system. S0 I leave that open. Well, that's an example of what I meant
by a general quantum mechanical simulator. I'm not sure that it's sulficient,
because I'm not sure that it takes care of Fermi particles,

we(§ 2 o

5. CAN QUANTUM SYSTEMS BE PROBABILISTICALLY
SIMULATED BY A CLASSICAL COMPUTER?

. Now the next question that | would like to bring up is, of course, the
__._E_E..,muu one, i.e, Can a quantum sysiem _un_._a___n_.-nm,__r_wﬁ:u simulated by
a classical (probabilistic, I'd assume) universal computer? In other words, a
computer which will give the same probabilities as the quantum sysiem
does. If you take the computer 1o be the classical kind I've described so far
(not the quantum kind described in the last section) and there're no changes
in EwF!rEnEﬁ_uunruﬂﬁ.vnﬂFnﬁg.ﬂwﬂalaw.ZRE-w
called the hidden-variable problem: it is impossible to represent the results
nqﬂEjE:.uﬁEn.ﬁﬂ.iE- classical universal device. To learn a little hit
about it, 1 say let us try to put the quantum equations in a form as close as

o™
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paossible to classical equations so that we can see what the difficulty is and
what happens. Well, first of all we can't simulate  in the normal way. As
I've explained already, there're (00 many variables. Our only hope is that
we're going to simulate probabilities, that we're going to have our computer
do things with the same probability as we observe in nature, as calculated
by the quantum mechanical system. Can you make a cellular automaton, or
something, imitate with the same probability what nature does, where I'm
going to suppose that quantum mechanics is correct, or at least after 1
discretize space and time it's correct, and see if [ can do it. | must point out
that you must directly generate the probabilities, the resulis, with thé correct
quanium probability. Direcily, because we have no way io siore all the
numbers, we have (o just imitate the phenomenon directly.

It tums out then that another thing, rather than the wave function, a
thing called the density marrix, i5s much more useful for this. I's not so0
useful as far as the mathematical equations are concerned, since it's more
complicated than the equations for «, but I'm not going to worry about
mathematical complications, or which is the easiest way to calculate, be-
cause with computers we don't have to be so careful to do it the very easiest
way. And so with a slight increase in the complexity of the equations (and
not very much increase) [ turn to the density matrix, which for a single
particle of coordinate x in a pure state of wave function {x) is

px, x)=¢*(x)¥(x)

This has a special property that is a function of two coordinates x, x*, The
presence of two quantities x and x* associated with each coordinate is
analogous to the fact that in classical mechanics you have to have two
variables to describe the state, x and £, States are described by a second-order
device, with two informations (“position™ and “velocity”). So we have to
have two pieces of information associated with a particle, analogous to the
classical situation, in order to describe configurations. (T've written the
density matrix for one particle, but of course there's the analogous thing for
R particles, a function of 2R variables).

This quantity has many of the mathematical properties of a probability.
For example if a state §{x) is not certain but is y, with the probability p,
then the density matrix is the appropriate weighted sum of the matrix for
each state a:

plx, x)= 2 patb(x )Wa(x").

A quantity which has properties even more similar to clasdical probabilities
is the Wigner [unction, a simple reexpression of the density matrix; for a
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single particle
-.E.H.hu_ﬂuﬂ_uah._.. m.k .Imwnu__..__.&._

We shall be emphasizing their similarity and shall call it “probability” in

. Quotes instead of Wigner function. Watch these quotes carefully, when they

are absent we mean the real probability. If “probability” had all the
u....-.En:E..En_ properties of a probability we could remove the quotes and
simulate it. W{x, p) is the “probability” that the particle has position x and
momentum p (per drx and dp). What properties does it have that are
analogous to an ordinary probability?

It has the property that if there are many variables and you want o
know the “probabilities” associated with a finite region, you simply disre-
nn_.n. the other variables (by integration). Furthermore the probability of
finding a particle at x is [W(x, p)dp. Il you can interpret W as a
probability of finding x and p, this would be an expected equation. Likewise
the probability of p would be expected to be [W(x, p)dx. These two
equaltions are correct, and therefore you would hope that maybe W{x, p) is
the probability of finding x and p. And the question then is can we make a
device which simulates this F'? Because then it would work fine,

Since the quantum systems I noted were best represented by spin
one-half {occupied versus unoccupied or spin one-hall is the same thing), I
tried 10 do the same thing for spin one-half objects, and it’s rather easy 1o
do. Although before one object only had two states, occupied and unoc-
cupied, the full description—in order to develop things as a function of time
—requires twice as many variables, which mean two slots at each point
which are occupied or unoccupied (denoted by + and — in what follows),
analogous (o the x and £, or the x and p. So you can find four numbers,
four “probabilities” (f, ., /4. f-+. f—_) which act just like, and I have
1o explain why they're not exactly like, but they act just like, probabilities 1o
find things in the state in which both symbols are up, one’s up and one’s
down, and so on. For example, the sum f, . + f, _+/__ +f__ of the
four “probabilities” is 1. You'll remember that one object now is going to
have two indices, two plus,/minus indices, or two ones and zeros at each
point, although the quantum system had only one. For example, if you
would like to know whether the first index is positive, the probability of that
wotild be

Prob(firstindex is+)=f, , + f,.  [spinz up]
i.e., you don't care about the second index. The probability that the first
index is negative is

Prob(firstindex is —)=/_, +f__,  [spinz down]

N
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These two formulas are exactly correct in quantum mechanics. You see I'm
hedging on whether or not “probability” f can really be a probability
without quotes. But when [ write probability without quotes on the lefi-hand
side I'm not hedging; that really is the quantum mechanical probability. It’s
interpreted perfectly fine here. Likewise the probability that the second
index is positive can be obtained by finding

Prob(second index is +)=f, . + /.,  [spinxup]

and likewise

Prob(second index is —)=f,_+f__  [spin x down]

You could also ask other questions about the system. You might like to
know, What is the probability that both indices are positive? You'll get in
trouble. But you could ask other questions that you won't get in trouble
with, and that get correct physical answers. You can ask, for example, what
is the probability that the two indices are the same? That would be

Prob(match)=f, , +f__  [spinyup]
Or the probability that there's no match between the indices, that they're
different,
Prob{no match)=f, _+/_,  [spiny down]

All perfectly all right. All these probabilities are correct and make sense,
and have a precise meaning in the spin model, shown in the square brackets
above, There are other “probability” combinations, other linear combina-
tions of these f"s which also make physically sensible probabilities, but 1
won't go into those now. There are other linear combinations that you can
ask questions about, but you don't seem to be able to ask questions about
an individual [

6. NEGATIVE PROBABILITIES

Wow, for many interacting spins on a lattice we can give a “probability™
(the quotes remind us that there is still a question about whether it's a
probability) for correlated possibilities:

_-ﬁAh_.Hn ''''' .w_-_”_

Tqmﬁ++.+|.|+.|.|__._
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Next, if | look for the quantum mechanical equation which tells me what the

changes of F are with time, they are exactly of the form that 1 wrole above
for the classical theory:

Ealte= 2 [[M(slsj i) | £(15)

but now we have F instead of P. The M{s,|s". 5'...) would &
EE.EE.H_ as the “probability” per unit E_u_n.a;_.&_ﬁ.ﬂ. lime ?hw.ﬂ%_ﬁpwnﬁ
slale al f urns into s, when the neighbors are in configuration s*, If you can
invent a probability M like that, you write the equations for it according to
normal .Enr.... ._._Eﬁ are the correct equations, the real, correct, quantum
EH.EEE equations for this F, and therefore you'd say, Okay, o I can
imitate it with a probabilistic computer!

_ There's only one thing wrong. These equations unforiunately cannot be
s0 interpreted on the basis of the so-called “probability”, or this probabilis-
tic computer can't simulate them, because the F is not necessarily positive.
Sometimes it's negative! The M, the “probability” (so-called) of moving
from one condition to another is itsell not positive; if I had gone all the way
back to the f for a single object, it again is not necessarily positive.

An example of possibilities here are

Jes=06 f,_=-01 f-o=03 [ _=02

; .,_.._u.._. sum f, , + f, _ is 0.5, that's 50% chance of finding the first index
positive. The probability of finding the first index negative is the sum
f-+ * f_ which is also 50%. The probability of finding the second index
positive is the sum f, , + f_, which is nine tenths, the probability of
finding it negative is f, _ + f__ which is one-tenth, perfectly alright, it's
cither plus or minus. The probability that they maich is eight-tenths, the
__._q.n,___n_u_—_:u.1 that they mismatch is plus two-tenths; every physical probabil-
ity comes out positive. But the original f s are not positive, and therein lies
the great difficulty. The only difference between a probabilistic classical
world and the equations of the quantum world is that somehow or other it
appears as if the probabilities would have to go negative, and that we do not
know, as far as | know, how lo simulate, Okay, that's the fundamental
problem. I don’t know the answer to it, but | wanted to explain that if I try
my best to make the equations look as near as possible to what would be
imitable by a classical probabilistic computer, | gel into irouble,

-
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7. POLARIFATION OF PFPHOTONS—TWO-STATES SYSTEMS

I would like to show you why such minus signs cannot be avoided, or
at least that you have some sort of difficully. You probably have all heard
this example of the Einstein-Podolsky-Rosen paradox, but I will explain this
little example of a physical experiment which can be done, and which has
been done, which does give the answers quantum theory predicis, and the
answers are really right, there's no mistake, if you do the experiment, it
actually comes out. And I'm going to use the example of polarizations of
photons, which is an example of a two-state system. When a photon comes,
you can say il's either x polarized or y polarized. You can find that out by
putting in a picce of caleite, and the photon goes through the calcite either
out in one direclion, or oul in another—actually slightly separated, and
then you put in some mirrors, that's not important, You gel two beams, two
places oul, where the photon can go. (See Figure 2.)

If you put a polanized photon in, then it will go to one beam called the
ordinary ray, or another, the extraordinary one. If you put detectors there
you find that each photon that you put in, it either comes out in one or the
other 100% of the time, and nol halfl and half. You either find a photon in
one or the other. The probability of finding it in the ordinary ray plus the
probability of finding it in the extraordinary ray is always 1 —you have to
have that rule. That works. And further, it's never found at both detectors.
(If you might have put two photons in, you could get that, but you cut the
intensity down—it's a technical thing, you don't find them in both detec-
Lors.)

Mow the nexi experiment: Separation inte 4 polarized beams (see
Figure 3). You pul two calcites in a row so that their axes have a relative
angle ¢, | happen 1o have drawn the second calcite in two positions, but it
doesn't make a difference if you use the same pigce or nol, as you care. Take
the ordinary ray from one and put it through another piece of calcite and
look at ils ordinary ray, which I'll call the ordinary—ordinary (O'-0) ray, or
look at its extraordinary ray, | have the ordinary-extraordinary (- E) ray.
And then the extraordinary ray from the first one comes oul as the E-0O
ray, and then there’s an E - E ray, alnght. Now you can ask what happens.




You'll find the following, When a
one of the four counters goes off. photon comes in. you atways find that only

If the photon is © from the first calcite, then the ite gi
! i second calcite
.Hu._l_u 4“,5 __ﬂﬁwﬂm_q cos’ ¢ or O-F with the complementary __hwnﬂbﬂ
-~ cos ¢ =sin’ ¢. Likewise an F photon gi - i ili
sin® or an E-E with the uqa&uwﬂq Enm_ﬂﬂ * £-0 with the prckabiliy

8 TWO-PHOTON CORRELATION EXPERIMENT

Let us wm now to the two : .
Figars @) photon correlation experiment (see

~ What can happen is that an alom emits two hotons in opposi
E_.RHUEH._ (e.g, the 3s—2p — Is transition in the H Hﬂu..._ .H._““u_nnﬂ ah.n
H.Hn_ HE...EE_.G.: (say, by you and by me) through two calcites set at oy
#; to the vertical. Quantum theory and experiment agree that the

probability P, that both of us detect an ordinary photon is
Foo = feos’ (¢, — ¢,)

The probability P,, that we both observe an extraordinary ray is the same
Feg=1cos? (9, —¢,)

The probability P, that I find © and you find £ is

Fop=1sin* (¢, — ¢,)

¢ nir
el - le

Fig. d.

-
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and finally the probability P, that I measure E and you measure O is
Hhﬂ“__”—wnu (=)

Motice that you can always predict, from your own measuréement, what [
shall get, O or E. For any axis ¢, that I chose, just sel your axis ¢, 10 4,,
then

Fog= Fga=0

and | must get whatever you get.

Let us see now how it would have 1o be for a local probabilistic
compuier. Fhoton 1 must be in some condition & with the probability £{d, ),
that determines it 1o go through as an ordinary ray [the probability it would
pass as E is 1= f($,)]. Likewise photon 2 will be in a condition 8 with
probability ggl¢;). If p,g is the conjoint probability to find the condition
pair a, f, the probability Py, that both of us observe O rays is

Pool#1,$:)= Z papfi(#1)8e(#2)  Zpap=1
af af

For(#i.42)= Wﬁ!._”_ —f(#:))ga(8;) erc

The conditions « determine how the pholons go. There's some kind of
correlation of the conditions. Such a formula cannot reproduce the quantum
results above for any p,g. [ () gg(¢;) il they are real probabilities— that
is all positive, although it is easy il they are “probabililies™ —negative for
some conditions or angles. We now analyze why that is 50,

I don't know what kinds of conditions they are, bul for any condition
the probahility f(#) of its being extraordinary or ordinary in any direction
musi be either one or zero. Otherwise you couldnt predict it on the other
side. You would be unable to predict with certainty what [ was going 1o get,
unless, every time the photon comes here, which way it's going to go is
absolutely determined. Therefore, whatever condition the photon is in, there
is some hidden inside variable that’s going o determine whether it's going
o be ordinary or extraordinary, This determination is done deterministi-
cally, not probahilistically; otherwise we can't explain the [act that you
could predict what I was going to gel exactly. So let us suppose thal
something like this happens. Suppose we discuss results just for angles
which are multiples of 30°.
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On cach diagram (Figure 5) are the angles 0%, 30°, 60°, 90°, 120*, and
_.._..1. A particle comes out to me, and it's in some sort of state, so what it's
going 1o give for 0°, for 30°, etc. are all predicted — determined—by the
state. Let us say that in a particular state that is set up the prediction for 0
is Em_ i'll be extraordinary (black dot), for 30° it's also extraordinary, for
60" it's ordinary (white dot), and so on (Figure 3a). By the way, the
oulcomes are complements of each other at right angles, because, remember,
it’s always either extraordinary or ordinary; so if you turn 90°, what used io
be an ordinary ray becomes the extraordinary ray. Therefore, whatever
condition it’s in, it has some predictive pattern in which you either have a
prediction of ordinary or of extraordinary—three and three— because at
right angles they're not the same color. Likewise the particle that comes to
you when they're separated must have the same pattern because you can
determine what I'm going to get by measuring yours. Whatever circum-
slances come oul, the patterns must be the same. So, if | want to know, Am
I going to get white a1 60°? You just measure at 60°, and you'll find white,
and therefore you'll predict white, or ordinary, for me. Now each time we
do the experiment the pattern may not be the same. Every time we make a
pair of photons, repeating this experiment again and again, it doesn’t have
to be the same as Figure 5a. Let's assume that the next time the experiment
my photon will be O or E for each angle as in Figure 5c. Then your patiern
looks like Figure 5d. But whatever it is, your pattern has to be my patiern
exacily—otherwise you couldn’t predict what I was going to get exactly by
measuring the corresponding angle. And so on. Each time we do the
expeniment, we gel different patterns; and it's easy: there are just six dots
and three of them are white, and you chase them around different way—ev-
erything can happen. If we measure at the same angle, we always find that
with this kind of arrangement we would get the same result,

- Now suppose we measure at ¢, — ¢, = 30°, and ask, With what proba-
bility do we get the same result? Let's first try this example here (Figure
5a,5b). With what probability would we get the same result, that they're

uc e ok el
= = g e n)
N
= ke ) yeer jaifen gy
Fig. 5
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both white, or they're both black? The thing comes out like this: suppose |
say, Aller they come out, I'm going 1o choose a direction at random, [ tell
you o measure 30° Lo the right of that direction. Then whatever 1 get, you
would get something different if the neighbors were different. (We would
get the same il the neighbors were the same.) What is the chance that you
gel the same resull as me? The chance is the number of times that the
neighbor is the same color. If you'll think a minute, you'll find that two
thirds of the time, in the case of Figure 5a, its the same color. The worst
case would be black /white /black /white /black /white, and there the proba-
bility of a match would be zero (Figure 5c,d). If you look at all eight
possible distinet cases, you'll find that the biggest possible answer is
two-thirds. You cannot arrange, in a classical kind of method like this, that
the probability of agreement at 30° will be bigger than two-thirds. But the
quantum mechanical formula predicts cos® 30° (or 3/4)—and experimenis
agree with this—and therein lies the difficulty.

That's all. That's the difficulty. That's why quantum mechanics can’t
seem to be imitable by a local classical computer.

I've enlertained mysell always by squeczing the difficuliy of quanium
mechanics into a smaller and smaller place, so as to get more and more
worried about this particular item. It seems Lo be almost ridiculous that you
cin squeeze il o a numencal question that one thing is bigger than another.
But there you are—ii is bigger than any logical argument can produce, if
you have this kind of logic. Now, we say “this kind of logic;” what other
possibilities are there? Perhaps there may be no possibilities, but perhaps
there are. Its interesting to try to discuss the possibilities. 1 mentioned
something about the possibility of time—of things being affected not just
by the past, bul also by the fulure, and therefore thatl our probabilities are
in some sense “illusory.” We only have the information from the past, and
we Iry to predict the next step, but in reality it depends upon the near future
which we can’t g=t at, or something ke that. A very inleresting question is
the origin of the probabilities in quantum mechanics. Another way of
puttings things is this: we have an illusion that we can do any experiment
that we want. We all, however, come [rom the same universe, have evolved
with it, and don't really have any “real” [reedom. For we obey certain laws
and have come from a certain past. Is it somehow that we are correlated 1o
the experiments that we do, so that the apparent probabilitics don't look
like they ought to look if you assume that they are random. There are all
kinds of questions like this, and what I'm trying to do is to get you people
who think about computer-simulation possibilities to pay a great deal of
attention (o this, 10 digest as well as possible the real answers of quantum
mechanics, and see if you can'l invent a different point’of view than the
physicists have had to invent 1o describe this, In fact the physicisis have no
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good point of view., Somebody mumbled something about a many-world
picture, and that many-world picture says that the wave function ¢ is what's
real, and damn the torpedos if there are so many variables, ¥*. All (hese
different worlds and every arrangement of configurations are all there Just
like our arrangement of configurations, we just happen o be sitting in this
one. It's possible, but I'm not very happy with it.

So, I would like to see if there's some other way out, and | want to
emphasize, or bring the question here, because the discovery of computers
and the thinking about computers has turned out to be extremely useful in
many branches of human reasoning. For instance, we never really under-
stood how lousy our understanding of languages was, the theory of gram-
mar and all that stuff, until we tried to make a computer which would be
able 1o undersiand language. We tried (o learn a great deal about psychol-
ogy by trying to undersiand how computers work. There are interesting
philosophical questions about reasoning, and relationship, observation, and
measurement and so on, which computers have siimulated us to think about
anew, with new types of thinking. And all | was doing was hoping that the
computer-type of thinking would give us some new ideas, if any are really
needed. 1 don’t know, maybe physics is absolutely OK the way it is. The
program that Fredkin is always pushing, about trying to find a computer
simulation of physics, seem to me to be an excellent program to follow out.
He and I have had wonderful, intense, and inlerminable argumenis, and my
argument is always that the real use of it would be with quantum mechanics,
and therefore full atiention and acceptance of the quantum mechanical
phenomena—the challenge of explaining quantum mechanical phenomena
—has 10 be put into the argument, and therefore these phenomena have to
be understood very well in analyzing the situation. And I'm not happy with
all the analyses that go with just the classical theory, because nature isn't
classical, dammit, and if you want to make a simulation of nature, you'd
better make it quantum mechanical, and by golly it's a wonderful problem,
because it doesn®t look s0 easy. Thank you,

9. DISCUSSION

Question: Just o interpret, you spoke first of the probability of A given
B, versus the probability of A and B jointly—that's the probability of one
obscrver seeing the result, assigning a probability to the other; and then you
brought up the paradox of the quantum mechanical result being 3,/4, and
this being 2/3. Arc those really the same probabilities? Isn't one a joint
probability, and the other a conditional one?

Answer: No, they are the same. Py, is the joint probability that both you
and | observe an ordinary ray, and P, is the joint probability for two
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exiraordinary rays. The probability that our observations maich is
Poo+ Pgy=cos30°=3/4

Question: Does il in some sense depend upon an assumption as to how
much information is accessible from the photon, or from the particle? And
second, lo take your question of prediction, your comment about predicting,
is in some sense reminiscent of t(he philosophical question, Is there any
meaning to the question of whether there is free will or predestination?
namely, the correlation between the observer and the experiment, and the
question there is, Is it possible 10 construct a test in which the prediction
could be reported 1o the observer, or instead, has the ability to represent
information already besn used up? And I suspect that yon may have already
uséd up all the information so that prediction lies outside the range of the
theory.
Answer: All these things | don't understand; deep questions, profound
questions. However physicists have a kind of a dopy way of avoiding all of
these things. They simply say, now look, friend, you take a pair of counters
and you put them on the side of your calcite and you count how many times
you get this stuff, and it comes out 75% of the time. Then you go and you
say, Now can | imitate that with a device which is going 10 produce the
same results, and which will operate locally, and you try to invent some
kind of way of doing that, and if you do it in the ordinary way of thinking,
you find that you can't gel there with the same probability. Therelore some
new kind of thinking is mecessary, but physicists, being kind of dull mindad,
only look at nature, and don't know how to think in these new ways.

Question: At the beginning of your talk, you talked about discretizing
various things in order to go about doing a real computation of physics.
And yet it seems o me that there are some differences between things like
space and time, and probability that might exist at some place, or energy, or
some field value. Do you see any reason to distinguish between guantization
or discretizing of space and time, versus discretizing any of the specific
parameters or values thal might exist?

Answer: | would like 10 make a few comments. You said quantizing or
discretizing. That's very dangerous. Quantum theory and quantizing is a
very specific type of theory. Discretizing is the right word, Quantizing is a
different kind of mathematics. If we talk about discretizing ... of course 1
pointed out that we're going 1o have to change the laws of physics. Because
the laws of physics as wrilten now have, in the classical limit, a continuous
variable everywhere, space and time, If, for example, in your theory you
were going 10 have an clectric field, then the electric field could not have (if
it"s going to be imitable, computable by a finite number of clements) an
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infinite number of possible values, it'd have 1o be digitized. You mi

-.En to gel away with a theory by redescribing __EDW without E"._._En_mh._._nh.ﬂ
field, but supposing for a moment that you've discovered that you can't do
that and you want to describe it with an electric field, then you would have
\0 say that, for example, when fields are smaller than a certain amount they
aren’t there at all, or something. And those are very interesting E.nEn:ﬁ
but unforiunately they're not good problems for classical physics because .L
you _u.rn. the example of a star a hundred light years away, and it makes a
wave which comes 1o us, and it gets weaker, and weaker, and weaker. and
weaker, the electric field's going down, down, down, how low can we
measure? You put a counter out there and you find “clunk,” and nothing
wmu.u.nmm for a while, “clunk,” and nothing happens for a while, It's nol
m._,ﬁﬁﬁﬂ_ at all, you never can measure such a liny field, you don't find a
.E..__. nnﬁ_mﬁa don't have to imitate such a tiny field, because the world that
you're trying o imitate, the physical world, is not the classical world, and jit
_H_"_n.._.ﬂ differently. So the particular example of discretizing the electric
w_m_n_. 15 & problem which I would not see, as a physicist, as fundamentally
difficult, because .: will just mean that your field has gotien 50 small that |
had better _u.n using quantum mechanics anyway, and so you've goi the
wrong equations, and 5o you did the wrong problem! That's how [ would
answer that. Because you see, if you would imagine that the electric field is
coming out of some ‘ones” or something, the lowest you could get would be
a full one, but that's what we see, you get a full photon. All these things
suggest that it's really true, somehow, that the physical world is represent-
ahle in a discretized way, because every time you get into a bind like this,
you discover that the experiment does just what’s necessary 10 escape the
trouble that would come if the electric field went to zero, or you'd never be
able to see a star beyond a certain distance, because the field would have
gotien below the number of digits that your world can CArTY.

Irmermanional fourwal of Theorenoa! Physics, Vol 20, Nos 677, 082 |

Quantum Sets and Clifford Algebras
David Finkelstein'
Georgia Tnsiiture of Techmalogy, Ailamie, Georgia 30132
Received May 7, 1981

The maihematics] language presently used for quanium physics is a high-level
language. As a lowesi-level or basic language | construct a quanium i theory in
thres stages: (1) Classical set theory, formulated as a Clifford algebra of “5
numbers™ generated by & single monadic operation, “bracing.” Br={ - - }. {2}
Indefimite et theory, & modificason of set theory dealing with the modal logical
concepl of possibility, (1) Quaniam sei ibeory. The quanium sef is constructed
lrom the mudl s24 by the familiar quantum fechmiques of tensor product and
anfisymmelrization, There are both a Clifford and a CGrassmann algebra with sets
a5 basis elements Rank and candinalily operators are anslogous 1o Schroedinger
coordinates of the theory, in that they are multiplication or *{-iype" operators.
“Pype” operniors analogous o Schroedinger momenta, in that they translomm
the {J-type quantities, are bracing (Br), Cliffard multiplication by & se1 X, and
the creator of X, represented by Grassmann maltiplication «f X)) by the set X Br
and fis sdpoint Br* form a Bose-Einsiein canonical pair, and of X'} and iis
adpoint o X¥)* foem a Fermi-Dirac or anticancmical pair. Many coelTicient
number sysiems can be employed in this quantization. | use the inbegers for a
discrele quantum theory, with the usual complex guamium theory as lmii
Quaniam st iheory may be applied 0 & quanium time space and & guanium
awlcmaton.

L INTRODUCTION

Seweral of us here, including Feynman, Fredkin, Kantor, Moussouris,
Petri, Wheeler, and Zuse, suggest that the universe may be discrete rather
than continuous, and more like a digital than an analog computer. C. F.
von Weizsaecker has worked this path since the early 19508, and recently [

have benefited from the relevant work of J. Ford.
Von Meumann points out that quanium theory revises the predicate

algebra of physics, making it coherent (in the sense of Jguch that it admits
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