Machine Learning Algorithms for Classification

Rob Schapire
Princeton University

WWWw.CS.princeton.edu/ ~schapire

Machine Learning

e studies how t@utomatically learn to make accurgiedictions based
on past observations

e classification problems:
classify examples into given set of categories

new
ex¢ample

labeled _ | machinelearning |, classification}

training algorithm rule

examples

i

predicted
classification

Examples of Classification Problems

e text categorization
e.g.. spam filtering
e.g.. categorize news articles by topic

e fraud detection
e optical character recognition

¢ natural-language processing
e.g.. part-of-speech tagging
e.g.. spoken language understanding
e market segmentation
e.g.: predict if customer will respond to promotion
e.g.: predict if customer will switch to competitor

e medical diagnhosis

Why Use Machine Learning?

e advantages:

often much moreaccurate than human-crafted rules

(since data driven)

humans often incapable of expressing what they know

(e.g., rules of English, or how to recognize letters),

but can easily classify examples

don’t need a human expert or programmer

flexible — can apply to any learning task

cheap — can use in applications requirm@ny classifiers

(e.g., one per customer, one per product, one per web page, ...)

e disadvantages

need a lot olabeled data
error prone — usually impossible to get perfect accuracy

Machine Learning Algorithms

e this talk:

decision trees

boosting

support-vector machines
neural networks

e Othersnot covered:

nearest neighbor algorithms
Naive Bayes

bagging

Decision Trees

Example: Good versus Evil

e problem: identify people as good or bad from their appearance

sex mask cape tie ears smokekss

training_data
batman | male yes yes no yes no Good
robin male yes yes no no no | Good
alfred male no no yes no no | Good
penguin | male no no yes no Yyes| Bad
catwomanfemale yes no no yes no| Bad
joker male no no no no no | Bad
test data
batgirl female yes yes no yes nol 7?7
riddler male yes no no no no| ?7?

Example (cont.)

/

cape

VAN

good

tle

:ynoke§

ﬂO

bad

good

How to Build Decision Trees

e choose rule to split on

e divide data using splitting rule into disjoint subsets
e repeat recursively for each subset

e stop when leaves are (almost) “pure”

Choosing the Splitting_Rule

e choose rule that leads to greatest increase in “purity”:

.....

T
,/

Choosing_the Splitting Rule (cont.)

e (IM)purity measures:
entropy.—p+Inpy —p_Inp_
Gini index: p.p_
wherep. [p_ = fraction of positive / negative examples

A

Impurity

1/2
PpL=1—P

Kinds of Error Rates

e training error = fraction of training examples misclassified
e test error = fraction of test examples misclassified

e generalization error = probability of misclassifying new random
example

Tree Size versus Accuracy
50

D
(@)
—T

error (%)

0 50 100
tree Size

e trees must be big enough to fit training data
(so that “true” patterns are fully captured)

e BUT: trees that are too big mapyerfit
(capture noise or spurious patterns in the data)

e significant problem: can't tell best tree size from training error

Overfitting_ Example

e fitting points with a polynomial

underfit ideal fit overfit
(degree = 1) (degree = 3) (degree = 20)

Building an Accurate Classifier

e for goodtest peformance, need:

enough training examples
good performance otfiaining set
classifier that is not too “complex®*©ccam’s razor”)

measure “complexity” by:

- number bits needed to write down
- number of parameters

- VC-dimension

Training data:

Good and Bad Classifiers

Bad:

Good:

insufficient data

- sufficient data
- low training error
- simple classifier

training error classifier
too high too complex

Theory

e Can prove:

(generalization error< (training erroy + O

@
m
with high probability

d = VC-dimension
m = number training examples

Controlling Tree Size

e typical approach: build very large tree that fully fits training data,
then prune back

e pruning strategies:
grow on just part of training data, then find pruning with minimum

error on held out part
find pruning that minimizes

(training erroy + constant (tree size

Decision Trees

e best known:

C4.5 (Quinlan)
CART (Breiman, Friedman, Olshen & Stone)

e very fast to train and evaluate
e relatively easy to interpret
e but: accuracy often not state-of-the-art

Boosting

Example: Spam Filtering

e problem: filter out spam (junk email)

e gather large collection of examplesggamandnon-spam

From: yoav@att.com Rob, can you review a paper... non-spam
From: xa412@hotmail.com Earn money without working!!!! spam

e main observation:

easy to find “rules of thumb” that are “often” correct
If ‘ buy now occurs in message, then predisjdam
hard to find single rule that is very highly accurate

The Boosting Approach

e devise computer program for deriving rough rules of thumb
e apply procedure to subset of emails

e obtain rule of thumb

e apply to 2nd subset of emails

e obtain 2nd rule of thumb

e repeat/' times

Detalls

e how tochoose examples on each round?
concentrate on “hardest” examples
(those most often misclassified by previous rules of thumb)
e how tocombine rules of thumb into single prediction rule?
take (weighted) majority vote of rules of thumb

Boosting

e boosting = general method of converting rough rules of thumb
iInto highly accurate prediction rule

e technically:
assume given “weak” learning algorithm that can consistently fin
classifiers (“rules of thumb”) at least slightly better than random,
say, accuracy 55%

given sufficient data, a boosting algorithm ganevably construct
single classifier with very high accuracy, say, 99%

AdaBoost

e given training examplesz;, y;) wherey; € {—1,+1}
e initialize D, = uniform distribution on training examples
efort=1,....7T:

train weak classifier (“rule of thumb”); on D;

choosey; > (
compute new distributio®; , ;:
for each example
— (< 1) if y; = hy(wg)

| e
multiply Dy(z;) by et (> 1) if y; # he(x;)

renormalize

e outputfinal classifierHg, () = sign (% oztht(a:))

weak classifiers = vertical or horizontal half-planes

Round 1

£1=0.30
a 1:042

Round 2

€59=0.21
o 220.65

Round 3

€3=0.14
a 320.92

Final Classifier

final

=sign| 0.42

+0.65

+0.92

Theory: Training_Error

e Weak learning assumption: each weak classifier at least slightly bet
than random

l.e., (error ofh; on D;) < 1/2 — ~ for somey > 0

e given this assumption, can prove:

. 942
training errofH,) < e 271

How Will Test Error Behave? (A First Guess)

'

0.8°
_ 06
o
o 04 test

0.2 |
’ train | | |
20 40 60 80 100

of rounds (I)

e expect:

training error to continue to drop (or reach zero)
test error tancrease wheri/y, ., becomes “too complex”
(overfitting)

Actual Typical Run

C4.5 test error

(boosting C4.5 on
“letter” dataset)

10

100

of rounds (T)
e test error doegnot increase, even after 1000 rounds

(total size> 2,000,000 nodes)
e test error continues to drop even after training error is zero!

1000

rounds

D

100

1000

train error

0.0

0.0

0.0

test error

8.4

3.3

3.1

The Margins Explanation

e key idea:

training error only measures whether classifications are right or
wrong
should also consideonfidence of classifications

e recall: Ay, Is weighted majority vote of weak classifiers
e measure confidence lmargin = strength of the vote

e empirical evidence and mathematical proof that:

large margins= better generalization error

(regardless of number of rounds)

boosting tends to increase margins of training examples
(given weak learning assumption)

Boosting

e fast (but not quite as fast as other methods)
e simple and easy to program

e flexible: can combine witlany learning algorithm, e.g.

C4.5
very simple rules of thumb

e provable guarantees

e state-of-the-art accuracy

e tends not to overfit (but occasionally does)
e many applications

Support-Vector Machines

Geometry of SVM'’s

e givenlinearly separable data
e margin = distance to separating hyperplane
e choose hyperplane that maximizes minimum margin

e Intuitively:
want to separate’s from —’s as much as possible
margin = measure of confidence

Theoretical Justification

e let v = minimum margin
R = radius of enclosing sphere
e then ,
VC-dim < (R)
N

so larger marginss> lower “complexity”
iIndependent of number of dimensions

e N contrast, unconstrained hyperplaneginhave

VC-dim = (# parameterns=n + 1

Finding_the Maximum Margin Hyperplane

e examplesk;, y; wherey; € {—1,+1}
e find hyperplanes - x = O with || v ||=1
e margin= y(v - x)
e maximize:~y

subject toy;(v - x;) > yand||v|=1
esetw —v/y=v=1/||w|
e minimize} || w|?

subject toxy;(w - x;) > 1

Convex Dual

e form Lagrangian, set/ow = (

e get quadratic program:
e Maximizes a; — 5 ¥ ;oYY %, - X,
_ ? 1,9
subject to:a; > 0

& W = 2 QY;X;
()
e o; = Lagrange multiplier
> () = support vector

e key points:

optimalw is linear combination of support vectors
dependence ox;’s only through inner products
maximization problem is convex with no local maxima

What If Not Linearly Separable?

e answer #1: penalize each point by distance from margie.,
minimize:

% | w HQ +constant > max{0, 1 — y;(w - x;)}
1

e answer #2: map into higher dimensional space in which data
becomes linearly separable

e Not linearly separable
e mapx = (1, z) — P(x) = (1, z1, 29, 2129, 27, 5)
e hyperplane in mapped space has form
a+ bxy+ cro + drixo + ex% + fx% =0
= conic in original space
e linearly separable in mapped space

Higher Dimensions Don't (Necessarily) Hurt

e may project to very high dimensional space

e statistically, may not hurt since VC-dimension independent of
number of dimensiong R/+)?)

e computationally, only need to be able to compute inner products
O(x) - O(z)

sometimes can do very efficiently usikgrnels

Example (cont.)

e modify ¢ slightly:
@(X) — (1, \/§$1, \/5332, \/53313327 CE%, ZU%>

e then

@(X) - @(Z) = 14+ 2x121 + 229290 + 201792129 + x%z% + ZE% + Z%
(14 x121 + :1:222)2
= (1+x-2)°

e in general, for polynomial of degreg use(1 + x - z)*
o very efficient, even though finding hyperplaneii.?) dimensions

Kernels

e kernel = functioni” for computing
K(x,z) = ®&(x) - O(z)

e permitsefficient computation of SVM’s in very high dimensions

e /{ can be any symmetric, positive semi-definite function
(Mercer’s theorem)

e some kernels:

polynomials
Gaussianxp (— [|x — z || /20)
defined over structures (trees, strings, seguences, etc.)

e evaluation:
w - O(x) = T oy P(x;) - P(x) = ¥ oy K (x4, %)

time depends on # support vectors

SVM'’s versus Boosting

e both are large-margin classifiers
(although with slightly different definitions of margin)

e both work in very high dimensional spaces
(in boosting, dimensions correspond to weak classifiers)

e but different tricks are used:

SVM'’s use kernel trick
boosting relies on weak learner to select one dimension (i.e., we:
classifier) to add to combined classifier

SVM's

e fast algorithms now available, but not so simple to program
(but good packages available)

e state-of-the-art accuracy

e power and flexibility from kernels
e theoretical justification

e many applications

Neural Networks

The Neural Analogy

e perceptron (= linear threshold function) looks a lot likaguron

Axon hillock

Dendrite Hucleus

T etrrutial buttons

)

schematic of biological neuron.

other neurons fire (inputs)
when electrical potential exceeds threshold, fires (output)

e iNputs:ay,...,a, € {0,1}
e Weights:wy,...,w, €R
1 if S wia; > 0

e “activation” =
0 else

A Network of Neurons

e idea: put perceptrons in network

ha)
output
Q/(T) hidden
[N
) () input

X1 X2 X3 XX
e Weights on every edge
e each unit = perceptron

e dramatic increase in representation power
(not necessarily a good thing for learning)

e great flexibility in choice of architecture

Perceptron Units

gX)

& -1 X

e problem: overall network computation is horribly discontinuous
because of

optimizing network weights easier when everything continuous

Smoothed Threshold Functions

e idea: approximate with smoothed threshold function

y 9X)

e

1
ee.0., usgr) = =

e NOW hw(x) IS continuous and differentiable in both input&nd
weightsw

Finding Weights

e given(xy,y1),. .., (Xm,ym) Wherey; € {0, 1}
e how to find weightsw?
e Want network outpukb., (x;) “close” toy;

e typical measure of closeness:

‘energy’ Elw) > (hulx;) —)

Minimizing_Energy.

e [/ IS a continuous and differentiable functionwof

e Minimize usinggradient descent:

start with anyw
repeatedly adjust by taking tiny steps in direction of steepest
descent

e easy to compute gradients

turns out to have simple recursive form in which error signal is
backpropagated from output to inputs

Implementation Detalils

e often do gradient descent step based just on single example
(and repeat for all examples in training set)

e often slow to converge
speed up using technigues like conjugate gradient descent

e can get stuck in local minima or large flat regions

e can overfit
useregularization to keep weights from getting too large

E(w) =3 (hw(x;) - yi) + Bllwll?

Neural Nets

e can be slow to converge

e can be difficult to get right architecture, and difficult to tune
parameters

e Not state-of-the-art as a general method

e With proper care, can do very well on particular problems, often witl
specialized architecture

Further reading on machine learning in general:
Luc Devroye, lazlo Gyorfi and Gabor LugosiA Probabilistic Theory of Pattern Recognitio8pringer, 1996.
Richard O. Duda, Peter E. Hart and David G. Stdt&ttern Classification (2nd ed.Yviley, 2000.

Trevor Hastie, Robert Tibshirani and Jerome FriednTdre Elements of Statistical Learning : Data Mining, Inference, and
Prediction Springer, 2001.

Michael J. Kearns and Umesh V. VaziraAin Introduction to Computational Learning TheoMIT Press, 1994.
Tom M. Mitchell. Machine LearningMcGraw Hill, 1997.
Vladimir N. Vapnik. Statistical Learning Theoryiley, 1998.

Decision trees:

Leo Breiman, Jerome H. Friedman, Richard A. Olshen and Charles J. &assification and Regression Trees
Wadsworth & Brooks, 1984.

J. Ross QuinlanC4.5: Programs for Machine Learning/organ Kaufmann, 1993.

Boosting:

Robert E. Schapire. The boosting approach to machine learning: An overvitd®SRi Workshop on Nonlinear Estimation
and Classification2002. Available from: www.cs.princeton.edwgchapire/boost.html.

Many more papers, tutorials, etc. available at www.boosting.org.
Support-vector machines:

Nello Cristianni and John Shawe-Taylém Introduction to Support Vector Machines and Other Kernel-based Learning
Methods Cambridge University Press, 2000. See www.support-vector.net.

Many more papers, tutorials, etc. available at www.kernel-machines.org.

Neural nets:
Christopher M. BishopNeural networks for Pattern Recognitio®xford University Press, 1995.

