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ABSTRACT
Motivation: Microarrays have become a central tool in bio-
logical research. Their applications range from functional
annotation to tissue classification and genetic network infer-
ence. A key step in the analysis of gene expression data is the
identification of groups of genes that manifest similar expres-
sion patterns. This translates to the algorithmic problem of
clustering genes based on their expression patterns.
Results: We present a novel clustering algorithm, called
CLICK, and its applications to gene expression analysis. The
algorithm utilizes graph-theoretic and statistical techniques to
identify tight groups (kernels) of highly similar elements, which
are likely to belong to the same true cluster. Several heur-
istic procedures are then used to expand the kernels into the
full clusters. We report on the application of CLICK to a vari-
ety of gene expression data sets. In all those applications it
outperformed extant algorithms according to several common
figures of merit. We also point out that CLICK can be success-
fully used for the identification of common regulatory motifs in
the upstream regions of co-regulated genes. Furthermore, we
demonstrate how CLICK can be used to accurately classify
tissue samples into disease types, based on their expression
profiles. Finally, we present a new java-based graphical tool,
called EXPANDER, for gene expression analysis and visuali-
zation, which incorporates CLICK and several other popular
clustering algorithms.
Availability: http://www.cs.tau.ac.il/~rshamir/expander/
expander.html
Contact: roded@icsi.berkeley.edu

1 INTRODUCTION
Microarray technology has become a central tool in biological
and biomedical research. This technology provides a global,
simultaneous view on the transcription levels of many or all
genes of an organism under a range of conditions or processes.
The information obtained by monitoring gene expression
levels in different developmental stages, tissue types, clinical

∗To whom correspondence should be addressed.

conditions and different organisms can help in understanding
gene function and gene networks, assist in the diagnostic
of disease conditions and reveal the effects of medical
treatments.

A key step in the analysis of gene expression data is the
identification of groups of genes that manifest similar expres-
sion patterns. This translates to the algorithmic problem of
clustering gene expression data. A clustering problem usu-
ally consists of elements and a characteristic vector for each
element. A measure of similarity is defined between pairs
of such vectors. (In gene expression, elements are usu-
ally genes, the vector of each gene contains its expression
levels under each of the monitored conditions, and sim-
ilarity can be measured, for example, by the correlation
coefficient between vectors.) The goal is to partition the ele-
ments into subsets, which are called clusters, so that two
criteria are satisfied: Homogeneity—elements in the same
cluster are highly similar to each other; and separation—
elements from different clusters have low similarity to
each other.

There is a very rich literature on cluster analysis going back
over three decades [cf. (Hartigan, 1975; Everitt, 1993; Mirkin,
1996; Hansen and Jaumard, 1997)]. Several algorithmic tech-
niques were previously used in clustering gene expression
data, including hierarchical clustering (Eisen et al., 1998),
self-organizing maps (Tamayo et al., 1999), K-means (Herwig
et al., 1999), simulated annealing (Alon et al., 1999), and
graph theoretic approaches: HCS (Hartuv and Shamir, 2000)
and CAST (Ben-Dor et al., 1999).

We have developed a novel clustering algorithm that we
call CLICK (CLuster Identification via Connectivity Kernels).
The algorithm does not make any prior assumptions on the
number of clusters or their structure. At the heart of the
algorithm is a process of recursively partitioning a weighted
graph into components using minimum cut computations. The
edge weights and the stopping criterion of the recursion are
assigned probabilistic meaning, which gives the algorithm
high accuracy. The speed of the algorithm is achieved by
a variety of experimentally tested heuristic procedures that
shortcut, prepend and append the main process.
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CLICK was implemented and tested on a variety of biolo-
gical data sets. On three large-scale gene expression data sets
the algorithm outperformed previously published results, that
utilized hierarchical clustering and self organizing maps. We
also show the utility of CLICK in more advanced biological
analyses: the identification of common regulatory motifs in
the promoters of co-regulated genes, and the classification of
samples into disease types based on their expression profiles.
In the latter problem CLICK achieved success ratios of over
90% on two real data sets.

We present a new java-based graphical tool, called
EXPANDER (EXPression ANalyzer and DisplayER), for
gene expression analysis and visualization. This software con-
tains several clustering methods including CLICK, K-Means,
hierarchical clustering and self-organizing maps, all con-
trolled via a graphical user interface. It enables visualizing the
raw expression data and the clustered data in several ways, as
well as single-cluster and all-clusters evaluations via fitness
scores and functional enrichment tests.

A preliminary version of this manuscript, containing an
early version of CLICK and some initial tests, has appeared
in Sharan and Shamir (2000).

2 PRELIMINARIES
Let N = {e1, . . . , en} be a set of n elements, and let C =
(C1, . . . , Cl) be a partition of N into subsets. Each subset
is called a cluster, and C is called a clustering solution, or
simply a clustering. Two elements ei and ej are called mates
with respect to C if they are members of the same cluster in C.
In the gene expression context, the elements are the genes and
we often assume that there exists some correct partition of the
genes into ‘true’ clusters. When C is the true clustering of N ,
elements that belong to the same true cluster are simply called
mates.

The input data for a clustering problem is typically given
in one of two forms: (1) Fingerprint data—each element
is associated with a real-valued vector, called its finger-
print, or pattern, which contains p measurements on the
element, e.g. expression levels of the gene’s mRNA at dif-
ferent conditions (cf. Eisen and Brown, 1999). (2) Similarity
data—pairwise similarity values between elements. These
values can be computed from fingerprint data, e.g. by cor-
relation between vectors. Alternatively, the data can represent
pairwise dissimilarity, e.g. by computing distances. Finger-
prints contain more information than similarity data, but the
latter is completely generic and can be used to represent
the input to clustering in any application. Note that there is
also a practical consideration regarding the presentation: the
fingerprint matrix is of order n × p while the similarity mat-
rix is of order n × n, and in gene expression applications
often n � p.

The goal in a clustering problem is to partition the set
of elements into homogeneous and well-separated clusters.

That is, we require that elements from the same cluster will
be highly similar to each other, while elements from dif-
ferent clusters will have low similarity to each other. Note
that this formulation does not define a single optimization
problem: homogeneity and separation can be defined in vari-
ous ways, leading to a variety of optimization problems (cf.
Hansen and Jaumard, 1997). Even when the homogeneity and
separation are precisely defined, those two objectives are typ-
ically conflicting: the higher the homogeneity—the lower the
separation, and vice versa.

For two elements x and y, we denote the similarity of their
fingerprints by S(x, y). We say that a symmetric similarity
function S is linear if for any three vectors u, v, and w, we
have S(u, v + w) = S(u, v) + S(u, w). For example, vector
dot-product is a linear similarity function.

Judicious preprocessing of the raw data is key to meaningful
clustering. This preprocessing is application dependent and
must be chosen in view of the expression technology used and
the biological questions asked. The goal of the preprocessing
is to normalize the data and calculate the pairwise element
(dis)similarity, if applicable. Common procedures for normal-
izing fingerprint data include transforming each fingerprint
to have mean zero and variance one, a fixed norm or a fixed
maximum entry. Statistically based methods for data normal-
ization have also been developed recently (see, e.g. Kerr et al.,
2000; Yang et al., 2002).

2.1 Assessment of solutions
A key question in the design and analysis of clustering tech-
niques is how to evaluate solutions. We present here figures of
merit for measuring the quality of a clustering solution. Differ-
ent measures are applicable in different situations, depending
on whether a partial true solution is known or not, and whether
the input is fingerprint or similarity data. For other possible
figures of merit we refer the reader to (Everitt, 1993; Hansen
and Jaumard, 1997; Yeung et al., 2001).

Suppose at first that the true solution is known, and we
wish to compare it to a suggested solution C. The Jaccard
coefficient (cf. Everitt, 1993) is defined as the proportion of
correctly identified mates in C to the sum of correctly identi-
fied mates plus the total number of disagreements between C
and the true solution (a disagreement is a pair which are
mates in one solution and non-mates in the other). Hence,
a perfect solution has score one, and the higher the score—
the better the solution. This measure is a lower bound
for both the sensitivity and the specificity of the suggested
solution.

When the true solution is unknown, we evaluate the qual-
ity of a suggested solution by computing two figures of merit
that measure its homogeneity and separation. We define the
homogeneity of a cluster as the average similarity between its
members, and the homogeneity of a clustering as the aver-
age similarity between mates (with respect to the clustering).
Precisely, if F(i) is the fingerprint of element i and the total
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number of mate pairs is M then:

HAve = 1

M

∑

i,j are mates,i<j

S(F (i), F(j)).

Similarly, we define the separation of a clustering as the
average similarity between non-mates:

SAve = 2

n(n − 1) − 2M

∑

i,j are non-mates,i<j

S(F (i), F(j)).

Related measures that take a worst case instead of average
case approach are minimum cluster homogeneity:

HMin = min
C∈C

∑
i,j∈C,i<j S(F (i), F(j))

(|C|
2

)

and maximum average similarity between two clusters:

SMax = max
C,C ′∈C

∑
i∈C,j∈C ′ S(F (i), F(j))

|C||C′| .

Hence, a solution improves if HAve or HMin increase, and if
SAve or SMax decrease. In computing all the above measures,
singletons are considered as one-member clusters. Note that
for fingerprint data and a linear similarity function, HAve and
SAve can be computed in O(np) time (Sharan, 2002).

The two types of measures, intra-cluster homogeneity and
inter-cluster separation, are inherently conflicting, as an
improvement in one will typically correspond to worsening
of the other. There are several approaches that address this
difficulty. One approach is to fix the number of clusters and
seek a solution with maximum homogeneity. This is done
for example by the classical K-means algorithm. For meth-
ods to evaluate the number of clusters see (Hartigan, 1975;
Tibshirani et al., 2000; Ben-Hur et al., 2002; Pollard and
van der Laan, 2002). Another approach is to present a curve
of homogeneity versus separation over a range of parameters
for the clustering algorithm used (Ben-Dor, private commu-
nication). For yet another approach for comparing solutions
across a range of parameters (see Yeung et al., 2001).

3 THE CLICK ALGORITHM
In this section we present a novel clustering algorithm,
which we call CLICK (CLuster Identification via Connectiv-
ity Kernels). The algorithm builds on the HCS algorithm
of Hartuv and Shamir (2000). It utilizes graph-theoretic
and statistical techniques to identify tight groups (kernels)
of highly similar elements, that are likely to belong to the
same true cluster. Several heuristic procedures are then used
to expand the kernels into the full clusters.

3.1 The probabilistic framework
A key modeling assumption in developing CLICK is that
pairwise similarity values between elements are normally

distributed: Similarity values between mates are normally
distributed with mean µT and variance σ 2

T , and similar-
ity values between non-mates are normally distributed with
mean µF and variance σ 2

F , where µT > µF . This situa-
tion was observed on simulated and real data and can be
theoretically justified under certain conditions by the Central
Limit Theorem (Sharan, 2002). Another modeling parameter
is pmates, the probability that two randomly chosen elements
are mates. We denote by f (x|µT , σT ) the mates probability
density function. We denote by f (x|µF , σF ) the non-mates
probability density function.

An initial step of the algorithm is estimating the parameters
µT , µF , σT , σF and pmates, using one of two methods: (1) In
many cases the true partition for a subset of the elements is
known. This is the case, for example, if the clustering of some
of the genes in a cDNA oligo-fingerprint experiment is found
experimentally (see, e.g. Hartuv et al., 2000), or more gener-
ally, if a subset of the elements has been analyzed using prior
biological knowledge (see, e.g. Spellman et al., 1998). Based
on this partition one can compute the sample mean and sample
variance for similarity values between mates and between non-
mates, and use these as maximum likelihood estimates for the
distribution parameters. The proportion of mates among all
known pairs can serve as an estimate for pmates, if the subset
was randomly chosen. (2) In case no additional information
is given, these parameters can be estimated using the EM
algorithm (Sharan, 2002).

3.2 The basic CLICK algorithm
The CLICK algorithm works in two phases. In the first phase
tightly homogeneous groups of elements, called kernels, are
identified. In the second phase these kernels are expanded
to the final clusters. In this section we describe the kernel
identification step.

The input to this phase is a matrix S of similarity values,
where Sij is the similarity value between elements ei and ej .
When the input is fingerprint data, a preprocessing step com-
putes all pairwise similarity values between elements, using
a given similarity function. The algorithm represents the input
data as a weighted similarity graph G = (V , E, w). In this
graph vertices correspond to elements and edge weights are
derived from the similarity values. Note that G is a complete
graph. The weight wij of an edge (i, j) reflects the probability
that i and j are mates, and is set to be

wij = log
Pr(i, j are mates|Sij )

Pr(i, j are non-mates|Sij )

= log
pmatesf (Sij |µt , σT )

(1 − pmates)f (Sij |µF , σF )
.

Here f (Sij |µT , σT ) is the value of the mates probability dens-
ity function at Sij . Similarly, f (Sij |µF σF ) is the value of the
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non-mates probability density function at Sij . Hence,

wij = log
pmatesσF

(1 − pmates)σT

+ (Sij − µF )2

2σ 2
F

− (Sij − µT )2

2σ 2
T

.

The Basic-CLICK algorithm can be described recursively
as follows: assume temporarily that all edge weights are non-
negative. Initially, all elements are active. In each step the
algorithm handles some connected component of the subgraph
induced by the active elements. If the component contains
a single vertex, then this vertex is considered a singleton and
is inactivated. Otherwise, a stopping criterion (which will be
described later) is checked. If the component satisfies the cri-
terion, it is declared a kernel and inactivated. Otherwise, the
component is split according to a minimum weight cut (a set
of edges of minimum total weight, whose removal would dis-
connect the graph). The algorithm outputs a list of kernels
which serves as a basis for the eventual clusters, and a list of
singletons.

The idea behind the algorithm is the following. Given a con-
nected graph G = (V , E), we would like to decide whether V

is a subset of some true cluster, or V contains elements from
at least two true clusters. In the former case we say that G is
pure. In order to make this decision we test for each cut C in
G the following two hypotheses:

• HC
0 : C contains only edges between non-mates.

• HC
1 : C contains only edges between mates.

We let Pr(HC
i |C) denote the posterior probability of HC

i , for
i = 0, 1. If G is pure then HC

1 is true for every cut C of G.
On the other hand, if G is not pure then there exists at least
one cut C for which HC

0 holds. We therefore determine that
G is pure if and only if HC

1 is accepted for every cut C of G.
In case we decide that G is pure, we declare it to be a kernel.
Otherwise, we partition V into two disjoint subsets, accord-
ing to a cut C in G, for which the posterior probability ratio
Pr(HC

1 |C)/Pr(HC
0 |C) is minimum. We call such a partition a

weakest bipartition of G.
We first show how to find a weakest bipartition of G. To

this end, we make a simplifying probabilistic assumption that
for a cut C in G the random variables {Sij }(i,j)∈C are pairwise
independent given that the corresponding element pairs are all
mates or all non-mates. We also assume that mate relations
between pairs (i, j) ∈ C are pairwise independent. We denote
the weight of a cut C by W(C) and its number of edges by
|C|. We denote by f (C|HC

0 ) the likelihood that the edges of
C connect only non-mates, and by f (C|HC

1 ) the likelihood
that the edges of C connect only mates. We let Pr(HC

i ) denote
the prior probability of HC

i , i = 0, 1.

Using Bayes theorem we conclude that for a complete
graph G and for any cut C in G:

log
Pr(HC

1 |C)

Pr(HC
0 |C)

= log
Pr(HC

1 )f (C|HC
1 )

Pr(HC
0 )f (C|HC

0 )

= |C| log
pmatesσF

(1 − pmates)σT

+
∑

(i,j)∈C

(Sij − µF )2

2σ 2
F

−
∑

(i,j)∈C

(Sij − µT )2

2σ 2
T

= W(C).

Thus, with our specific edge weight definition, a minimum
weight cut of G induces a weakest bipartition of G. However,
the computation of a minimum weight cut in a graph with
negative edge weights is NP-hard. We give in the next section
a heuristic procedure to compute a minimum weight cut for
a graph with some negative edge weights.

It remains to show how to decide ifG is pure or, equivalently,
which stopping criterion to use. For a cut C, we accept HC

1
if and only if Pr(HC

1 |C) > Pr(HC
0 |C). That is, we accept the

hypothesis with higher posterior probability.
Let C be a minimum weight cut of G. For every other cut

C′ of G

log
Pr(HC

1 |C)

Pr(HC
0 |C)

= W(C) ≤ W(C′) = log
Pr(HC ′

1 |C′)
Pr(HC ′

0 |C′)
.

Therefore, HC
1 is accepted for C if and only if HC ′

1 is accepted
for every cut C′ in G. Thus, we accept HC

1 and declare that
G is a kernel if and only if W(C) > 0. In practice, we also
require a kernel to have at least k elements, with a default
value of k = 15.

3.3 Computing a minimum cut
The minimum weight cut problem can be solved efficiently
on graphs with non-negative edge weights. Unfortunately, in
the basic algorithm one must compute minimum weight cuts
in graphs with negative edge weights. This problem is NP-
hard even for a complete graph with edge weights 1 or −1
only (Shamir et al., 2002). We overcome this problem using
a two-phase process. In the first phase we split the input graph
iteratively using a heuristic procedure for computing a min-
imum weight cut, which is based on a 2-approximation for
the related maximum weight cut problem (MAX-CUT). In
the second phase we filter from the resulting components
all negative weight edges and then apply the basic CLICK
algorithm.

Our heuristic for computing a minimum weight cut applies
two steps:

• MAX-CUT approximation: let w∗ be the maximum
weight in the input graph. Transform all weights using
the transformation f (w) = w∗ − w + ε, for small
ε > 0, resulting in positive edge weights. Apply a
2-approximation for MAX-CUT (cf. Hochbaum, 1997)

1790



CLICK and EXPANDER: clustering gene expression data

on the weight-transformed graph, and let (V1, V2) be the
resulting cut.

• Greedy improvement: starting from (V1, V2) greedily
move vertices between sides so as to decrease the weight
of the implied cut, using the original edge weights.

This heuristic is applied to the input graph recursively, and
the recursion stops whenever the output partition for a com-
ponent is the trivial one (all vertices are on one side of the
partition). We then execute Basic-CLICK on each resulting
component, after filtering negative weight edges from it. For
testing if a certain component is a kernel, we find its min-
imum weight cut in the filtered graph, and evaluate the total
weight of the edges connecting the two sides of the cut in the
unfiltered graph. We declare the graph a kernel if the latter
weight is positive.

In order to reduce the running time of the algorithm on
large connected components, for which computing a min-
imum weight cut is very costly, we screen low weight vertices
prior to the execution of Basic-CLICK. The screening is done
as follows: We first compute the average vertex weight W

in the component, and multiply it by a factor which is pro-
portional to the logarithm of the size of the component. We
denote the resulting threshold by W ∗. We then remove vertices
whose weight is below W ∗, and continue to do so updating
the weight of the remaining vertices, until the updated weight
of every (remaining) vertex is greater than W ∗. The removed
vertices are marked as singletons and handled at a later stage.

3.4 The full algorithm
The Basic-CLICK algorithm produces kernels of clusters,
which should be expanded to yield the full clusters. The
expansion is done by considering the singletons found. We
denote by L and R the current lists of kernels and singletons,
respectively. Define the similarity between two sets as the
average similarity between their elements. An adoption step
repeatedly searches for a singleton v and a kernel K whose
similarity is maximum among all pairs of singletons and
kernels. If the value of this similarity exceeds some pre-
defined threshold, then v is added to K and removed from R.
Otherwise, the iterative process ends. For some theoretical
justification of the adoption step see (Ben-Dor et al., 1999).
After the adoption step takes place, we start a recursive clus-
tering process on the set R of remaining singletons. This is
done by discarding all other vertices from the initial graph.
We iterate that way until no change occurs.

At the end of the algorithm a merging step merges similar
clusters. The merging is done iteratively, each time merging
two kernels whose similarity is the highest and exceeds a pre-
defined threshold. When two kernels are merged, they are
replaced by a new kernel corresponding to their union. Finally,
a last singleton adoption step is performed. The full CLICK
algorithm is described in Figure 1.

While some change occurs do:
Split( ).
Let be the set of resulting components.
For each do:

Remove edges with negative weight from .
Filter low-degree vertices from .
Basic-CLICK( ).

Let be the list of kernels produced.
Let be the set of remaining singletons.
Adoption( ).

.
Merge( ).
Adoption( ).

Fig. 1. The full CLICK algorithm. L and R are the current lists of
kernels and singletons, respectively. Initially, R contains all ele-
ments, and L is empty. The split procedure partitions the graph
induced on the elements in R into components, using approximated
minimum weight cut computations.

In order to handle large data sets efficiently several enhance-
ments were incorporated into CLICK. When the number of
elements exceeds several thousands, memory requirements
for storing all pairwise similarity values become a serious
bottleneck. In this case we partition the set of elements into
super-components, each having a limited size, by gradually
increasing a weight threshold for the graph edges. For each
super-component we evaluate the parameters of its similarity
distributions and apply the full algorithm to it. The merge step
and the last adoption step are performed later for the whole
graph. We also devised a variant of CLICK for clustering
fingerprint data using a linear similarity function. This vari-
ant uses properties of the similarity function to perform the
adoption and merge steps considerably faster than otherwise
possible. In addition, it allows the user to specify a homo-
geneity parameter with a default value of µT , which serves
as a lower bound on the homogeneity of the resulting clus-
tering. For full details on the formation of super-components
and handling fingerprint data see Sharan (2002).

4 RESULTS
4.1 Implementation and simulations
We have implemented the CLICK clustering algorithm in
C++. Our implementation uses the algorithm of Hao and
Orlin (1994) for minimum weight cut computations. This
algorithm has theoretical running time of O(n2√m) (for
a graph with n vertices and m edges), and was shown
to outperform other minimum cut algorithms in practice
(Chekuri et al., 1997). We measured the running times
of CLICK on simulated data sets (described below) of
various sizes containing 10 equal-size clusters. The run-
ning times, as measured on a Pentium III 600 MHz, were
approximately linear in the number of parameters, and
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Table 1. CLICK’s accuracy in simulations: average Jaccard coefficients over
20 runs

Cluster structure � = 0.75 � = 1 � = 1.5 � = 2 � = 2.5

5 clusters of size 100 0.81 0.95 0.99 1 1
10 clusters of size 50 0.39 0.8 0.97 1 1
6 clusters of size

50,60, . . . , 100
0.75 0.93 0.99 1 1

� is specified in standard deviations.

ranged from few seconds for a data set of 500 elements, to
7 min for a data set of 10 000 elements. Linearity (exclud-
ing the initial computation of all pairwise similarities) was
observed on real data sets of up to 150 000 elements. This
is a result of the time reduction heuristics incorporated
into CLICK.

We have created an environment for simulating expression
data and measuring CLICK’s performance on the synthetic
data. We use the following simulation setup: the cluster struc-
ture, i.e. the number and size of clusters, is pre-specified.
Each cluster has an associated mean pattern, also called its
centroid. Each coordinate of this centroid is drawn uniformly
at random from [0, R] for some R, independently from the
other coordinates. Each element fingerprint is drawn at ran-
dom according to a multivariate normal distribution around
the corresponding mean pattern with the same standard devi-
ation σ for each coordinate. Similar distribution models are
used in other works that model gene expression data (see, e.g.
Ghosh and Chinnaiyan, 2002).

In our simulations we measured the performance of the
algorithm as a function of the cluster structure and the dis-
tance � in standard deviation units between µT and µF

(due to the nature of the simulations, σT ≈ σF ). This dis-
tance can be controlled by changing R. Table 1 presents
CLICK’s results for several simulation setups as measured
by the average Jaccard coefficient over 20 runs. The simu-
lated fingerprints in all cases were of length 200, and we used
σ = 5 for all coordinates. It can be seen that CLICK performs
well (Jaccard coefficient above 0.8) on all cluster structures
even for distances as low as one standard deviation and, as
expected, performance worsens when the mate and non-mate
distributions get closer.

4.2 The EXPANDER clustering and
visualization tool

We have developed a java-based graphical tool, called
EXPANDER (EXPression ANalyzer and DisplayER), for
gene expression analysis and visualization. This software
provides graphical user interface to several clustering meth-
ods, including CLICK. It enables visualizing the raw
expression data and the clustered data in several ways.
In the following we outline the visualization options and

demonstrate them on part of the yeast cell-cycle data set
of Spellman et al. (1998), clustered using CLICK. The original
data set contains samples from yeast cultures synchronized by
four independent methods, as well as separate experiments in
which some cyclins were induced. Spellman et al. (1998) iden-
tified in this data 800 genes that are cell-cycle regulated. The
data set that we used contains the expression levels of 698 out
of those 800 genes, which have up to three missing entries,
over the 72 conditions that cover the α factor, cdc28, cdc15,
and elutriation experiments. [As in Tamayo et al. (1999), the
90 min data point was omitted from the cdc15 experiment.]
Each row of the 698 × 72 matrix was normalized to have
mean 0 and variance 1. CLICK’s solution for this data contains
six clusters and 23 singletons. [For a systematic comparison
of CLICK, K-means, SOM and CAST on this data set,
see Shamir and Sharan (2002).]

Clustering methods: EXPANDER implements several clus-
tering algorithms including CLICK, K-means, hierarchical
clustering and self-organizing map (SOM). The user can spe-
cify the parameters of each algorithm: homogeneity parameter
for CLICK, number of clusters for K-means, type of linkage
(single, average or complete) for hierarchical clustering, and
grid dimensions for SOM. In addition, the user can upload an
external clustering solution.

Matrix visualization: EXPANDER can create images for
the expression matrix and the similarity matrix (Fig. 2). In
these images the matrices are represented graphically by col-
oring each cell according to its content. Cells with neutral
values are colored black, increasingly positive values with
red of increasing intensity, and increasingly negative val-
ues with green of increasing intensity. Each matrix can be
shown in two ways: (1) in its raw form; and (2) after reorder-
ing the rows of the matrix so that elements from the same
cluster appear consecutively. (The columns are also reordered
in the similarity matrix.) Ideally, in the reordered expression
matrix we expect to see a distinct pattern for each cluster,
while the reordered similarity matrix should be composed of
red squares, each corresponding to a cluster, in black/green
background.

When using hierarchical clustering, the solution dendro-
gram is displayed alongside with the expression matrix, in
which the genes are reordered according to the dendrogram.

Clustering visualization: EXPANDER provides several
visual images of a clustering solution. A graphical over-
view of the solution is produced by showing for each
cluster its mean expression pattern along with error bars
indicating the standard deviation in each condition. For an
example see Section 4.3. Alternatively, for each single cluster
a superposition of all the patterns of its members can be
shown.

Another data visualization method provided in EXPANDER
is principal component analysis [cf. (Johnson and Wichern,
1982)]. This is a method for reducing data dimensionality
by projecting high-dimensional data into a low-dimensional
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C D

A B

Fig. 2. Matrix images in EXPANDER. (A) The raw yeast cell-cycle data matrix of Spellman et al. (1998). Rows correspond to genes and
columns to conditions. Reds/greens represent over/under-expression levels. (B) The data matrix after clustering the genes into six clusters
and reordering the rows accordingly. (C) The similarity matrix. Rows and columns correspond to genes. Reds/greens: higher/lower similarity
values. (D) The similarity matrix after clustering the genes and reordering the rows and columns accordingly. (For a clear image, an arbitrary
subset of 400 genes and 25 conditions only is shown in A and B.)

space spanned by the vectors that capture maximum variance
of the data. In EXPANDER we reduce the data dimension to 2,
by computing the two axes that capture maximum variance of
the data. The projected data is visualized as points in the plane.
Given a clustering solution the points are colored according
to their assigned clusters.

As a simple aid for the interpretation of clustering results
using biological knowledge, EXPANDER can present and
quantify the enrichment of gene functions in a clustering solu-
tion (Fig. 3). Given a functional annotation (an assignment
of an attribute, such as functional category) of the genes in
an input data set, the abundant functional categories in each

cluster are shown in a pie chart. For each such category we
compute its enrichment in the cluster by computing a hyper-
geometric p-value, as suggested in Tavazoie et al. (1999).

4.3 Application to yeast cell-cycle data
CLICK was first tested on the yeast cell-cycle data set of Cho
et al. (1998). That study monitored the expression levels of
6218 S. cerevisiae putative gene transcripts (ORFs) measured
at 10 min intervals over two cell cycles (160 min). We com-
pared CLICK’s results to those of GeneCluster (Tamayo et al.,
1999). To this end, we applied the same filtering and data nor-
malization procedures of Tamayo et al. (1999). The filtering
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A B

Fig. 3. Functional enrichment. The pie charts show the functional
enrichment for CLICK’s clusters 3 (left) and 4 (right) computed
on the yeast cell-cycle of Spellman et al. (1998). Only functional
categories containing at least 10% of the genes in a cluster are shown.
The most enriched categories are transport (in cluster 3, p = 1.7 ×
10−7) and developmental processes (in cluster 4, p = 1.8 × 10−6).

removes genes that do not change significantly across samples,
leaving a set of 826 genes. The data preprocessing includes
the removal of the 90 min time-point and normalizing the
expression levels of each gene to have mean 0 and variance 1
within each of the two cell-cycles.

CLICK clustered the genes into 18 clusters and left no
singletons. These clusters are shown in Figure 4. A sum-
mary of the homogeneity and separation parameters for the
solutions produced by CLICK and GeneCluster is shown in
Table 2. CLICK obtained better results in all four measured
parameters. A putative true solution for a subset of the genes
was obtained through manual inspection by Cho et al. (1998).
Cho et al. identified 416 genes that have periodic patterns and
partitioned 383 of them into five cell-cycle phases according
to their peak time. We calculated Jaccard coefficients for the
two solutions based on 250 of these genes that passed the vari-
ation filtering. The results are shown in Table 2. It can be seen
that CLICK’s solution is much more aligned with the putative
true solution.

4.4 Human fibroblasts
We analyzed the data set of Iyer et al. (1999), that stud-
ied the response of several human fibroblasts to serum. It
contains expression levels of 8613 human genes obtained as
follows: human fibroblasts were deprived of serum for 48 h
and then stimulated by addition of serum. Expression levels
of genes were measured at 12 time-points after the stimula-
tion. An additional data-point was obtained from a separate
unsynchronized sample. A subset of 517 genes whose expres-
sion levels changed substantially across samples was analyzed
by the hierarchical clustering method of Eisen et al. (1998).

Table 2. A comparison between CLICK and GeneCluster on a yeast cell-
cycle data set of Cho et al. (1998). The Jaccard score is computed with
respect to the putative solution of Cho et al. (1998)

Program No. of clusters Homogeneity Separation Jaccard

HAve HMin SAve SMax

CLICK 18 0.62 0.46 −0.05 0.33 0.54
GeneCluster 30 0.59 0.22 −0.01 0.81 0.28

Table 3. A comparison between CLICK and the hierarchical clustering of
Eisen et al. (1998) on the data set of response of human fibroblasts to
serum (Iyer et al., 1999)

Program No. of clusters Homogeneity Separation

HAve HMin SAve SMax

CLICK.1 6 0.72 0.42 −0.29 0.55
CLICK.2 6 0.78 0.68 −0.19 0.54
Hierarchical 10 0.76 0.65 −0.08 0.75

CLICK.1 represents CLICK’s solution with the default homogeneity parameter.
CLICK.2 represents a solution of CLICK with the homogeneity parameter set to 0.76.

The data was first normalized by dividing each entry by the
expression level at time zero, and taking a logarithm of the
result. For ease of manipulation, we also transformed each
fingerprint to have norm 1. The similarity function used was
dot-product, giving values identical to those used in Eisen
et al. (1998). CLICK clustered the genes into six clusters with
no singletons. Table 3 presents a comparison between the
clustering quality of CLICK and the hierarchical clustering
of Eisen et al. (1998) on this data set. The two solutions are
incomparable since CLICK’s solution has better separation
while the other solution has better average homogeneity. In
order to directly compare the two algorithms we reclustered
the data using CLICK with homogeneity parameter 0.76
(instead of the default value µT = 0.65, see Section 3.4),
since this value is the average homogeneity of the hierarchical
solution. CLICK produced six new clusters and 28 singletons.
The solution parameters are given in Table 3. Note that CLICK
performs better in all parameters.

4.5 Human cell cycle
We next studied the gene expression data set of Whitfield et al.
(2002). This data set contains the expression profiles of syn-
chronized HeLa cells in five independent experiments using
three synchronization methods. Whitfield et al. (2002) iden-
tified in the data 874 genes that are cell-cycle regulated. The
experiments were done using two kinds of arrays. We chose
to focus on three experiments (76 conditions) that used the
larger array, which represents about 29 600 genes, as in the
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Fig. 4. CLICK’s clustering of the yeast cell-cycle data of Cho et al. (1998). x-axis: time points 0–80, 100–160 at 10 min intervals. y-axis:
normalized expression levels. The solid line in each sub-figure plots the average pattern for that cluster. Error bars display the measured
standard deviation. The cluster size is printed above each plot.

experiments with the smaller array only approximately half
the genes were monitored. As we later performed also regula-
tory motif analysis, we focused on 497 of the genes, that were
identified as cell-cycle regulated, were represented on the lar-
ger array and had promoter sequences in the public database
[NCBI Reference Sequence project (Maglott et al., 2000),
release of June 2001]. We applied the same data processing
methods as described in Whitfield et al. (2002) to this reduced
data set of expression levels of 497 genes over 76 conditions.
CLICK’s solution for this data consisted of nine clusters and
35 singletons. For comparison, we used the partition of the
497 genes according to their cell cycle phases, as provided in
Whitfield et al. (2002).

In order to assess the clusters according to their biological
relevance we also retrieved GO annotations (Consortium,
2000) for the genes, and checked the enrichment of each
GO category in each of the clusters using a hypergeomet-
ric score. In total, 226 genes had known annotations. The
homogeneity and separation parameters for the two clustering

Table 4. A comparison between the solutions of CLICK and (Whitfield et al.,
2002) on a human cell-cycle data set of (Whitfield et al., 2002)

Program No. of
clusters

Homogeneity Separation Significantly
enriched
categories (p)HAve HMin SAve SMax

CLICK 9 0.44 0.31 0.07 0.33 REP (5 × 10−5),
CC (0.002)

(Whitfield et al.,
2002)

5 0.22 0.12 0.12 0.23 REP (7 × 10−4)

Abbreviations for GO categories: REP—DNA replication and chromosome cycle;
CC—mitotic cell cycle.

solutions, along with enrichment p-values that are below 0.01,
are shown in Table 4. Notably, CLICK’s solution is super-
ior in all parameters and is more aligned with the biological
annotations.
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4.6 Identifying regulatory motifs
In a previous work (Sharan et al., 2002) we have shown the
utility of CLICK in identifying regulatory sequence motifs.
We outline the method and results below.

Several studies have shown that co-expressed genes tend to
share common regulatory elements in their promoter regions
(Tavazoie et al., 1999; Zhang, 1999; Brazma and Vilo, 2000).
This motivates the following two-step approach for detecting
regulatory motifs: (I) Cluster the genes into groups shar-
ing similar expression patterns. (II) In each cluster search
for sequence patterns that are over-represented in upstream
regions of the sequences of cluster members.

We analyzed the data set published by Jelinsky et al. (2000).
In that experiment, expression levels of all 6200 ORFs of
the yeast S. cerevisiae were measured over 26 biological
conditions in order to study the cellular response to DNA
damage. 2610 genes that changed by a factor of 3 or more
in at least one condition were subjected to cluster analysis.
The clustering reported in Jelinsky et al. (2000) consists
of 18 clusters, obtained by GeneCluster (Tamayo et al.,
1999). In comparison, CLICK identified 33 clusters with
more than 10 members. We then applied the AlignACE motif
finding algorithm (Roth et al., 1998; Hughes et al., 2000)
to promoter regions (500 bases upstream of the translation
start sites) of the genes in each cluster. In total, 26 signi-
ficant motifs were identified using CLICK’s clusters, and
30 such motifs were identified using GeneCluster’s. The
identified motifs were matched against the SCPD database
of experimentally verified yeast transcription factor binding
sites (Zhu and Zhang, 1999). Of CLICK’s 26 motifs, sev-
enteen (65%) were verified by SCPD. Of GeneCluster’s 30
motifs, 19 (63%) were verified. Seventeen of the motifs were
common and 13 of these (76%) were verified. This demon-
strates the utility of the approach and also the advantage of
combining results from different clustering algorithms.

4.7 Tissue classification
An important application of gene expression analysis is the
classification of tissue types according to their gene expres-
sion profiles. Recent studies (Alon et al., 1999; Golub et al.,
1999; Alizadeh et al., 2000; van’t Veer et al., 2002) have
demonstrated that gene expression data can be used in dis-
tinguishing between similar cancer types, thereby allowing
more accurate diagnosis and treatment.

In these studies the data consist of expression levels of
thousands of genes in several tissues. The tissues origi-
nate from two or more known classes, e.g. normal and
tumor. The analysis aims at studying the typical expres-
sion profile of each class and predicting the classification
of new unlabeled tissues. Classification methods employ
supervised learning techniques, i.e. the known classifications
of the tissues are used to guide the algorithm in building
a classifier. These include support vector machines (Ben-Dor
et al., 2000; Furey et al., 2000), boosting (Ben-Dor et al.,

2000), clustering (Ben-Dor et al., 2000), discriminant ana-
lysis (Xiong et al., 2000) and weighted correlation (Golub
et al., 1999). Classification can be improved by first limit-
ing the data set to genes that are informative for the required
distinction. Several methods have been suggested to choose
subsets of informative genes (Ben-Dor et al., 2000; Dudoit
et al., 2002; Furey et al., 2000; Xiong et al., 2000; Xing and
Karp, 2001).

Ben-Dor et al. (2000) were the first to demonstrate the
strength of clustering in cancer classification problems. Key
to their method is combining the labeling (known classi-
fication) information in the clustering process. Suppose we
use a clustering algorithm with at least one free parameter.
Given an unlabeled tissue, the clustering algorithm is applied
repeatedly with different parameter values on the set of all
tissues (known and unknown). Each solution is scored by its
level of compatibility with the labeling information, and the
best solution is chosen. Each unlabeled tissue is then assigned
to the most represented class among the known tissues in its
cluster.

The compatibility score for a clustering solution used by
Ben-Dor et al. is simply the number of tissue pairs that are
mates or non-mates in both the true labeling and the cluster-
ing solution. The clustering algorithm used in Ben-Dor et al.
(2000) was CAST with Pearson correlation as the similarity
function.

We have classified two data sets using CLICK. The first
data set of Alon et al. (1999) contains 62 samples of colon
epithelial cells, collected from colon-cancer patients. They
are divided into 40 ‘tumor’ samples collected from tumors,
and 22 ‘normal’ samples collected from normal colon tissues
of the same patients. Of the ∼6000 genes represented in the
experiment, 2000 genes were selected based on the confi-
dence in the measured expression levels. The second data set
of Golub et al. (1999) contains 72 leukemia samples. These
samples are divided into 25 samples of acute myeloid leuk-
emia (AML) and 47 samples of acute lymphoblastic leukemia
(ALL). Of the ∼7000 genes represented in the experiment,
3549 were chosen based on their variability in the data set.

The application of CLICK to classify these data sets enu-
merates several homogeneity parameters for CLICK, and
chooses the solution which is most compatible with the given
labels. We used the same similarity function and compatibility
score as in Ben-Dor et al. (2000). A sample is not classified
if it is either a singleton in the clustering obtained, or no class
has a majority in the cluster assigned to that sample. In order
to assess the performance of CLICK we employed the leave
one out cross validation (LOOCV) technique, as done in Ben-
Dor et al. (2000). According to this technique, one trial is
performed for each tissue in the data set. In the ith trial, the
algorithm tries to classify the ith sample based on the known
classifications of the rest of the samples. The average classi-
fication accuracy over all trials is computed. Table 5 presents
a comparison between the classification based on CLICK and
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Table 5. A comparison of the classification quality of CLICK and CAST on
the colon data of Alon et al. (1999) and the leukemia data of Golub et al.
(1999)

Data set Method Correct Incorrect Unclassified

Colon CLICK 87.1 12.9 0.0
CAST 88.7 11.3 0.0

Leukemia CLICK 94.4 2.8 2.8
CAST 87.5 12.5 0.0

For each data set and clustering algorithm the percentage of correct classifications (in
the LOOCV iterations), incorrect classifications and unclassified elements are specified.

Table 6. A summary of the classifications obtained by CLICK on the colon
data of Alon et al. (1999), the whole leukemia data set of Golub et al. (1999),
and part of the leukemia data set which contains ALL samples only

Data set Size Correct Incorrect Unclassified

Colon 2000 87.1 12.9 0.0
50 90.3 9.7 0.0

Leukemia 3549 94.4 2.8 2.8
50 97.2 2.8 0.0

ALL 3549 97.9 0.0 2.1
50 97.9 2.1 0.0

For each data set classifications were performed with respect to the total number of genes,
and with respect to the 50 most informative genes. The percentage of correct classifica-
tions (in the LOOCV iterations), incorrect classifications and unclassified elements are
specified.

that of CAST, as reported in Ben-Dor et al. (2000). The results
are comparable, with CAST performing slightly better on the
colon data set, and CLICK performing better on the leukemia
data set.

Next, we tested CLICK’s utility in differentiating between
two very similar types of cancer. We concentrated on part
of the leukemia data set composed of the 47 ALL samples
only. For these samples an additional sub-classification into
either T-cell or B-cell, is provided. An application of CLICK
to this data set resulted in an almost perfect classification (see
Table 6).

Finally we examined the influence of feature selection on
the classification accuracy. To this end, we sorted the genes
in each data set according to the ratio of their between-sum-
of-squares and within-sum-of-squares values, as suggested in
Dudoit et al. (2002). This ratio is computed by the following
formula:

BSS(g)

WSS(g)
=

∑
i=1,2 ni(xg,i − xg)

2

∑
i=1,2

∑
k∈i (x

k
g − xg,i )2

Here i denotes the class number, ni its size, k denotes the
sample number, xg,i is the average expression level of gene g

at class i, xg is the average expression level of gene g, and xk
g is

the expression level of gene g at sample k. For each LOOCV
iteration we chose the 50 genes with the highest value and

performed the classification procedure on the reduced data
set which contained the expression levels of these 50 genes
only. The results of this analysis are shown in Table 6. For
both the colon and leukemia data sets the performance was
improved in the reduced data set.

5 CONCLUDING REMARKS
We presented in this paper a novel clustering algorithm
which utilizes graph-theoretic and statistical techniques. At
the heart of the algorithm is a process of recursively parti-
tioning a weighted graph into components using minimum
cut computations. The edge weights and the stopping cri-
terion of the recursion are assigned probabilistic meaning,
which gives the algorithm high accuracy. Our method has,
however, several limitations: first, the probabilistic model is
not always suitable, as is the case for example for protein
similarity data (Sharan, 2002). Second, our algorithm cannot
identify (with confidence) very small clusters, as small sets of
elements may satisfy the kernel criterion merely by chance.
Last, our method is designed to produce a hard partition of the
elements into clusters, although such a partition is not always
adequate, e.g. when element classification is hierarchical by
nature.

CLICK was tested on several biological data sets, ori-
ginating from a variety of applications, and was shown to
outperform extant clustering algorithms according to several
common figures of merit. It is also fast, allowing high-
accuracy clustering of large data sets of size over 100 000
in a couple of hours. CLICK is available as part of the
EXPANDER software package for clustering and visualizing
gene expression data.
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