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Protein–protein interactions are one of the most
important regulatory mechanisms in cells; they
underlie intercellular communication, signal
transduction and the regulation of gene expression.
Indeed, most cellular processes are coordinated by
specific protein interactions. The completion of the
Human Genome Project led to the realization that the
genome is composed of fewer protein-coding genes
than had been previously believed [1,2]. It is now
thought that the complexity underlying the biology of
higher organisms could arise not from the number of
their proteins, but rather from the combinatorial
interactions among them [3].

Many large-scale protein-interaction datasets
have been published, each attempting to completely
characterize the ‘interactome’– the set of all protein
interactions in a cell [4–7]. (See supplementary
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material website for a summary of the different
techniques, http://genecensus.org/integrate/
interactions.) These datasets, although extensive,
miss many of the interactions, and report spurious
interactions as well (e.g. Ref. [7]). To use these
datasets to build robust and statistically significant
protein-interaction networks, it will be essential 
to quantify the intrinsic error rates in these
experiments. This will be challenging, because it is
difficult to define a basis protein-interaction dataset
with which to validate the experimentally identified
interactions. Yet it is critical, because in yeast, 
for example, there are a possible 18 million protein
interactions (given 6000 proteins), of which only 
a small fraction is relevant biologically. With so 
many potential interactions, even a very small
false-positive rate can create a large amount of
spurious interactions that swamp out the real ones.

Recently, some papers have attempted to 
evaluate the quality of these interaction datasets, 
by either integrating additional annotation
(e.g. looking for similar expression patterns between
two interacting proteins) or through comparison with
reference interaction sets [8–11]. The conclusions
from these studies were that the interaction datasets
contain false positives and are missing many true
protein interactions.

Our paper provides two complementary analyses
of the reliability of protein-interaction datasets.
First, we use information provided through X-ray
crystallography of several macromolecular
complexes to provide validated interactions that
serve as a basis set for comparison with the
interaction databases. Second, on a somewhat larger
scale, we compared the interactions in the known
complexes in the curated MIPS database, with those
that had been determined using genome-wide
approaches. (See supplementary material for more
extensive discussion of MIPS complexes.)

Assessing interactions with the 3D structures of 

three complexes

Interactions discovered using structural biology of
large complexes provide an excellent test set to assess
the quality and coverage of protein-interaction
datasets. Over the past two years, the structures of
several large, conserved protein complexes have been
determined, and from these structures, a list of
verified protein–protein interactions can be
extracted. The structures that we selected 
(RNA polymerase II, the proteasome and the 
Arp2/3 complex) were solved independently of the
experimental interaction datasets, and the 
3D structures were determined after most of the
biochemical and genetic studies were published.
Thus, the structures provided objective and verified
interactions to assess the reliability of biochemical
and genetic protein-interaction studies.

The 3D structures of RNA polymerase II, 
the proteasome and the Arp2/3 complex, 

which have 10, 14 and 7 subunits, respectively, 
were examined to identify stable protein–protein
interaction interfaces, defined as more than 800 Å2 of
contacting surface area. This 800 Å2 threshold was
chosen based on the lower limits of the interaction
interfaces of binary protein–protein complexes in the
structural database (PDB) [12]; the ‘average’
protein-interaction interface is 1600 Å2 [13].

For RNA polymerase II, of the 45 possible
interactions that could exist among its ten subunits
[(10 × 9)/2), 13 clear protein–protein interactions 
were found in the crystal structure [14,15]. Of the
21 possible interactions that could occur among the
Arp2/3 subunits, six exist in the crystal structure [16].
Of the 91 possible interactions that could occur among
the subunits in the proteasome, 14 were observed 
in the crystal structure [17]. The ribosome was
eliminated as a candidate for our analysis because 
it is mostly held together by protein–RNA
interactions, confounding attempts to verify all the
protein–protein interactions.

An assumption in our analysis is that the protein
interactions defined on the basis of the structural
biology of stable macromolecular complexes provide
an objective set of interactions. This assumption is
supported by two observations. First, many
macromolecular assemblies – particularly, RNA
polymerase II, Arp2/3 and the proteasome – are very
stable and can be purified to homogeneity without
loss of subunits. In fact, the RNA polymerase II
complex is even stable in high concentration of
chaotropic agents, such as urea [18]. Therefore, the
subunit–subunit interactions found in the crystal
structure are unlikely to have formed randomly.
Second, many crystallized proteins are enzymatically
active. For example, it is known that the crystallized
form of the active RNA polymerase II elongation
complex has the same repertoire of specific protein
interactions as does the native form [19].

False positives and negatives
For each of the three protein complexes, lists of
biochemically and genetically defined interactions
were extracted from genome datasets, as well as 
from the biochemical and genetic literature. 
The structural, biochemical and genetic lists were
compared to assess overlap, consistency and the rates
of false positives and false negatives. For clarification:
a false positive (FP) is defined as an interaction that
was documented in one of the datasets but did not
exist in the crystal structure; a true positive (TP) 
is an interaction that was documented in one of the
datasets and did, in fact, exist in the crystal structure;
a false negative (FN) is an interaction that had been
tested experimentally and failed to score as an
interaction, but is known to exist in the crystal
structure; and a true negative (TN) is an interaction
that had been tested experimentally and failed to
score as an interaction, and is known not to occur in
the crystal structure.
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For each method, we define the false-positive rate
as the number of false-positive interactions reported
per total reported interactions [FP/(FP + TP)], 
and the false-negative rate as the fraction of known
interactions that are not identified [FN/(FN + TP)].

Comparing structural and biochemical interactions 
in the literature
Before the elucidation of the 3D structures for the
three above-mentioned complexes, many of the
subunits had been subjected to in vitro and in vivo
binding experiments, chemical cross-linking and
far-western analysis (see Table 1 for an overview of
data relating to RNA polymerase II). The aim of these
experiments, in the absence of crystallographic
information, had been to deduce the
protein-interaction map for a given complex. 
With 3D structures now in hand, we compared the
subunit–subunit interactions defined by these

experiments with the interactions revealed in the
crystal structures.

In one series of experiments with RNA
polymerase II subunits, every recombinant subunit
was cloned into baculoviruses as either a
glutathione-S-transferase (GST)-tagged or an
untagged protein. Every combination of individual
GST-tagged subunits and non-tagged subunits 
were co-expressed and precipitated, generating a
comprehensive set of inter-subunit pairwise
interactions [20–24]. This is a common and 
accepted strategy (‘pull-down’) to define binary
protein–protein interactions. Remarkably, 61% of 
the interactions in these experiments were false
positives. Some of the false-positive interactions
were even ‘validated’ by several different biochemical
approaches [20,24] and, in a few cases, spurious
contact sites were also mapped in detail [24,25]. 
The false-negative rate was 38%.
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Table 1. Agreement between the various interaction datasets in the literature and the crystal structure of RNA polymerase II
a
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TP    2    10    6    6    7    2    1    7    15    9    10
FN    3    0    2    4    3    2    2    6    9    7    0
TN    6    3    17    14    16    2    2    29    32    25    3
FP    4    7    5    11    9    3    1    3    23    10    7

Coverage    15    20    30    35    35    9    6    45    35    20    36
False-negative rate FN/(FN + TP) [%]    60    0    25    40    30    50    67    46    38    44    0
False-positive rate FP/(TP + FP) [%]    67    41    45    65    56    60    50    30    61    53    41

aThe left side gives statistics for the datasets individually, whereas we group the datasets by method on the right side. We show the count of true positive (TP), false
negative (FN), true negative (TN) and false positive (FP), the coverage (that is, the number of unique subunit-subunit pairs the data covers), the false-negative rate (FN/(FN
+ TP)) as well as the false-positive rate defined as FP/(TP + FP) for each dataset. The table does not contain the Ulmasov and Larkin data referred to in the text since they
both contain only one TP, which is already covered by the Yasui data. Note that for three FPs in the cross linking data, the subunits are actually in contact in the structure,
but with less than our 800 Å2. In addition, we show the corresponding statistics for a dataset that combines the individual datasets using a Bayesian procedure [40]. The
integration of the various data sources both increases the coverage (45 subunit–subunit pairs for the combined data versus 6–35 pairs for the individual data) and lowers
the false-positive rate (30% for the combined data versus 41–67% for the individual data).
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The prior odds are O(I) = 13/(45 – 13) because there are 13 interactions among the 45 possible subunit-subunit pairs in the crystal structure. Assuming conditional
independence of the evidence (meaning that each experiment is only dependent on whether there is an interaction and thereafter they are independent of the outcome of
the other experiments), the likelihood ratio can be written as:
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The likelihood ratio L(ek|I) for experiment k can be computed from the experimental data.



Biochemical interactions were also extracted from
a series of far-western experiments in which the RNA
polymerase II subunits were resolved by denaturing
gel electrophoresis, transferred to a solid support,
renatured and over-laid with various purified
subunits. Of the interactions in the RNA polymerase II
crystal structure, 44% were not observed with this
method, whereas 53% of the reported interactions
were false positives [24,25].

Chemical cross-linking [26] proved a more
effective method for identifying biochemical
interactions between RNA polymerase II subunits.
The cross-linking data contained no false negatives
and ten true positives; there were seven false
positives (41%), although for three of them we did find
subunit–subunit contacts in the crystal structure
with a contact area below our 800 Å2 cutoff.

Cross-linking approaches were also used to 
study the Arp2/3 and proteasome complexes. 
For the Arp2/3 complex, 86% of the interactions 
found by cross-linking were present in the crystal
structure [27,28], whereas the false-negative rate 
was 50%. For the proteasome, only five of the
14 interactions (36%) reported in the cross-linking
study were not present in the crystal structure [29],
whereas the false-negative rate was 79%. 
The relative success of cross-linking approaches
(25–41% false-positive rate) suggests that this
method could be preferable to others, particularly 
for relatively stable macromolecular complexes.
Unfortunately, chemical cross-linking can be
challenging to perform on a genomic scale, and the
efficacy of cross-linking studies is dependent on the
particular protein complexes and the juxtaposition of
the appropriate amino acid residues that react with
the cross-linking reagent.

Comparing structural and genetic interactions
The yeast two-hybrid (Y2H) method identifies
interactions between two recombinant proteins
expressed in yeast cells. Current estimates suggest
that the false-positive rate could range between
47 and 91% in the genome-wide Y2H screens [30]. 
Our analysis of the structural information for RNA
pol II, Arp2/3 and the proteasome was unable to
contribute to the estimation of the false-positive rate
in Y2H screens for two reasons. First, the structural
information was derived from yeast complexes, and
therefore we could not rule out the possibility that the
interaction between two subunits could be bridged by
other, endogenous yeast components. Second, the
Y2H method could also detect transient interactions
not revealed in the structure, but that might exist
during complex assembly.

We were able to use the structural information to
estimate the false-negative rates in Y2H screens. 
Our analysis was restricted to the Arp2/3 and
proteasome complexes because the RNA polymerase
II subunits were omitted in the Y2H, as they are
known to score positively in the absence of a protein

partner. The individual proteasomal subunits were
screened against the rest of the yeast proteasome by
Cagney and colleagues [31], and 12 interactions
between the subunits were revealed. Of these
12 interactions, eight were also found in the crystal
structure and have contact surfaces that exceeded
800 Å2. Because the crystal structure revealed
14 interactions between subunits, this directed Y2H
approach missed six out of 14 interactions (43%).
When interactions among Arp2/3 subunits were
tested directly using Y2H screens, 71% of
subunit–subunit interactions present in the Arp2/3
crystal structure were not detected [32].

Comparison with genome-wide two-hybrid
The proteasome and Arp2/3 subunits were also
analyzed as part of several genome-wide Y2H screens.
In the first, carried out by Uetz and colleagues [6,33],
five interactions involving proteasome subunits and
other proteins were uncovered, but not one
interaction between two known proteasomal subunits
was found. This dataset also did not contain any
interactions between Arp2/3 subunits. A subsequent
two-hybrid screen carried out by Ito et al. [7]
identified 30 interactions between proteasome
subunits and non-proteasome proteins, but only one
intra-complex interaction. This interaction was, 
in fact, present in the crystal structure. To reduce the
extent of false positives in their dataset, Ito et al.
created a ‘core dataset’ that was filtered by taking
only data validated by more than three interaction
sequence tags. This core dataset eliminated
protein–protein interaction data that did not appear
at least three times in their screen. This filtering
process eliminated the single correct proteasome
interaction from the dataset. The Ito et al. screen
correctly identified one interaction between Arp2/3
subunits, and this interaction was maintained in the
‘core dataset’.

In summary, we estimate that the false-negative
rate in directed two-hybrid screens ranges from
~43 to 71%, and the rate was even higher in
genome-scale applications of the Y2H method.

Large-scale pull-down experiments
Biochemical interactions can also be discovered using
‘pull-down’experiments in vivo. In these experiments,
a protein tag is engineered onto a specific subunit and
the gene for the tagged subunit added back into the
cell. The tagged protein is then purified from cell
lysates using affinity chromatography, and the
co-purifying proteins identified. For multi-protein
complexes, this method does not provide information
about binary protein interactions, but rather
describes the collection of proteins that are stably
associated with the tagged protein. Gavin et al. and
Ho et al. reported the results from large-scale
pull-down experiments in two recent publications [4,5].
For the three complexes we studied, the in vivo ‘pull
down’method was quite successful in identifying
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subunits that interact within the complex. In the case
of RNA polymerase, two of the ten polymerase
subunits were tagged and the co-purifying proteins
identified. Half of the subunits known to interact
directly with these subunits were detected, for a
false-negative rate of 50%. When a subset of the
Arp2/3 and the proteasome subunits were tagged,
there were no false negatives; all interactions present
in the crystal structure whose contacting surface are
>800 Å2 were found in these datasets. The in vivo
‘pull-down’experiments seemed to have fewer false
negatives than other methods, although the rate for
RNA polymerase II was 50%.

In conclusion, we have used a small test set of
structure-based interactions to assess the quality of
several protein-interaction datasets, and have
quantified significant sources of error. Can the 
results of our structural analysis of complexes be
generalized? We cannot be sure. With regard to the
analysis of the 3D structures of large complexes, 
it is possible that inter-subunit interactions distinct
from those seen in the crystal might occur, but these
complexes were selected to be quite stable. It is also
likely that the discrepancies between the information
in the crystal structure and the biochemical literature
results from protocols used in high-throughput
studies, which are acknowledged to generate
unvalidated data in the interest of speed and
efficiency. Even if these 3D complexes represent
special cases, our analysis deserves some attention,
because it is probably the first objective assessment of
the protein-interaction datasets.

Broadening the comparisons to 174 complexes

Complexes in the MIPS database
Our structure-based analysis of the 31 proteins
within the three complexes points to the potential for
significant errors in large-scale protein-interaction
datasets. To broaden our study, we looked at a larger
set of complexes listed in the MIPS database [34].
This comprises complexes that are manually
annotated from the yeast literature. From the MIPS
complexes catalogue, we identified 174 protein
complexes that contain 2–81 proteins each. The
structures of the complexes in the MIPS complexes
catalog are generally not known; consequently, it is
impossible to perform 3D-structure-based analyses.
However, we can still use them as a quality control for
the genome-wide datasets, and their use broadens our
analysis by orders of magnitude.

A theoretical minimum and maximum number of
interactions within these complexes can be calculated
(Fig. 1). For example, the maximum number of
interactions would arise if each protein in these
complexes interacted with every other in the complex
(an unreasonable assumption for the very large
complexes). Among the 174 protein complexes that we
selected, there would be a theoretical maximum of
8250 interactions among all the proteins. The
theoretical minimum number of interactions among

the proteins in all the MIPS complexes would be 834,
because the lowest possible number of interactions in
a complex is the number of proteins itself minus one
(when the proteins are arrayed like beads on a string,
thus all proteins in the complex are connected to at
least one and at most two other proteins). Our
estimations also presume that the complexes are
maintained by protein interactions and not by other
molecules, such as RNA as in the case of the ribosome.
Of course, the number of true interactions among
these proteins somewhere in the middle of this range,
probably closer to the minimum.

Overlap between MIPS complexes and genome-wide
Y2H interaction datasets
In Table 2, we present a comprehensive overview of
the overlap between the MIPS complexes and the
other datasets. Each dataset is defined on a different
subset of genes, which makes comparison between
the sets difficult. Moreover, when we look at the
intersections between the datasets we find that they
are fairly small (Fig. 2). This arises for two reasons:
(1) the different subsets of genes, and (2) the different
interactions for the same sets of proteins in each
dataset. Consequently, in the analysis we consider
both how many interactions and how many genes are
shared between the datasets and the complexes. 
This allows us to separate the two effects.

We can use the Uetz data [6] as an example.
Within the 174 MIPS complexes, there are
871 distinct proteins, and the Uetz dataset overlaps
with a subset of 179 proteins. Of these, there are
78 proteins involved in 50 known intra-complex
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Fig. 1. We systematically compared the interaction datasets with the
complexes. In general, we do not know the structure of the complexes
in the MIPS catalog, so we simply counted which interactions from 
the genome-wide datasets are between proteins that are in the same
MIPS complex. The proteins in the dashed circle all belong to the 
same protein complex, and the dashed lines between the proteins
indicate all theoretically possible protein–protein interactions 
within this complex. The red lines indicate the interactions of a
genome-wide dataset.



interactions (i.e. where the observed Uetz
interactions correspond to a protein-pair in a MIPS
complex, generating a true positive). However, these
78 proteins are also involved in 14 interactions that
connect different MIPS complexes, thus potentially
representing newly discovered or false-positive

interactions. The remaining 101 of the 179 proteins
are only involved in interactions not found in any
MIPS complex, again representing new interactions
or false positives.

How many of the MIPS complex interactions do
the Uetz data miss? This, of course, depends on how
many interactions we count in the MIPS complexes.
We can estimate that the 78 proteins that are both 
in the Uetz data and the MIPS complexes must 
be connected by between 102 and 333 existing
interactions (using minimum and maximum
numbers of interactions for complexes; see above and
the website for a detailed derivation of these values).
Thus, the Uetz data missed between 52 (= 102 − 50)
and 283 (= 333 − 50) existing interactions, implying 
a false-negative rate between 51% (= 52/102) 
and 85% (= 283/333).

One can analyze the other two-hybrid datasets in a
similar fashion. The Ito data has a false-negative rate
of 76–96%; the corresponding values for the Ito ‘core’
data are 45–74%.

Overlap between MIPS complexes and genome-wide
‘pull-down’ interaction datasets
In contrast to the Y2H experiments where proteins
are studied outside their normal cellular milieu, 
the comprehensive in vivo pull-down experiments
capture the protein in its natural state.
Consequently, one might expect the pull-down
experiments to be somewhat more sensitive and miss
fewer existing interactions.

The right panel in Table 2 shows the comparison
between the two pull-down experiments 
(Gavin et al. [4] and Ho et al. [5]) with the MIPS
complexes catalog, using a similar approach as for
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Fig. 2. The size of the different genome-wide datasets and their possible intersections and their
consistency with the MIPS complexes catalog. The bars (relating to the left y-axis) indicate the number
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‘Ito + Uetz’ contains only interactions that are both within Ito and Uetz). The blue line (relating to the
right y-axis) shows what fraction of these interactions overlap with protein pairs within the same MIPS
complex. We show this for both the individual datasets (left), pairwise intersections of datasets
(middle) and higher order intersections (three or more datasets). As the degree of intersection among
the datasets increases, the fraction of interactions within the same MIPS complex increases. The
different datasets are complementary and cover more interactions than each dataset individually. 

Table 2. The size of the genome-wide datasets and their overlap with the MIPS complexes catalog
a

Yeast two-hybrid in vivo pull-down

Dataset

Ref.

Uetz

[6]

Ito

[7]

Ito core

[7]

Ho

[5]

Gavin

[4]

No. proteins 1044 3278 786 1578 1361

No. proteins overlapping with MIPS 179 453 142 331 472
No. proteins linked to partner is in same MIPS complex 78 121 73 214 436

No. proteins not linked to MIPS partner 101 332 69 117 36

No. interactions 981 4393 754 25333 31304

No. interactions between proteins, both in MIPS catalog 64 177 51 2042 4718

No. interactions between proteins, same MIPS complex (TP) 50 78 46 464 1743

No. interactions between proteins, different MIPS complexes (FP or new) 14 99 5 1578 2975

No. MIPS protein pairs missed (FN) 52–283 250–1682 38–131 464 300

FN/(TP + FN) (false-negative rate) 51%–85% 76%–96% 45%–74% 50% 15%

aThe overlap is first shown in terms of the number of proteins, then in terms of the number of interactions (or protein pairs). Note that we consider the maximum number of
possible protein pairs between all subunits for the complexes in the MIPS catalog and the Ho and Gavin datasets. The number of interactions that overlap with the MIPS catalog
is very small for each of the individual genome-wide datasets. This is partly due to the fact that the genome-wide datasets cover different proteins than those that the
MIPS catalog contains. When we normalize for the protein set shared between the MIPS catalog and the genome-wide dataset in each case, the relative overlap becomes more
substantial. For instance, of the 31304 interactions (protein pairs) in the Ho dataset, 4718 are between proteins that the MIPS catalog contains. Of these 4718 interactions,
1743 correspond to protein pairs that are within the same MIPS complex (true positives, TP), whereas 2975 are between proteins in different MIPS complexes (these either
represent newly discovered interactions or false positives, FP). The Gavin dataset missed 300 protein pairs within the same MIPS complex (false negatives, FN). These statistics
allow us to measure the sensitivity TP/(TP + FN) of each genome-wide dataset, that is, the fraction of protein pairs within the same MIPS complex that each genome-wide dataset
recovers (normalized for the set of proteins shared with the MIPS catalog). The Gavin dataset recovers the largest amount of interactions (86%), followed by the Ho dataset (50%)
and the Y2H datasets (Uetz 15%–49%, Ito 4%–24%). The sensitivity of the Ito core dataset (26%–55%) is higher than for the total Ito dataset.



the Y2H. Overall, the false-negative rates of the 
Ho and Gavin datasets, are 50% and 15%, 
thus confirming our expectation. However, these
datasets also contain 1578 (77% of 2042) and 2975
(63% of 4718) interactions between different MIPS
complexes, respectively, thus representing either
newly discovered or false-positive interactions.

Thus, it appears that the pull-down methods are
very sensitive; they discover real interactions at a
high rate, but the datasets are probably populated 
by false positives.

The relatively low false-negative rates in the
in vivo pull-down experiments are remarkable, 
even with the caveat that the experimenters had the
benefit of prior knowledge of the contents of the MIPS
database. Why is this approach apparently superior
to Y2H methods? First, MIPS is mostly populated by
stable complexes, which are amenable to pull-down
methods because they can remain intact for hours
during affinity chromatography. Second, the
pull-down experiments probe the complexes in an
active state; presumably the proteins retain their
structural integrity during the purification process.
Why does the TAP-tagging approach used in the
Gavin et al. paper appear to be superior to that used
in the Ho et al. paper in reducing the false-negative
rate? We speculate that it is because in the
TAP-tagging approach, the engineered genes are
introduced into the yeast genome using homologous
recombination, and are expressed at normal levels
from their natural promoter. The TAP-tagged
proteins can therefore incorporate into the normal
cellular environment. These features all contribute to
the relative success of this method. By contrast, the
method used by Ho and colleagues, which involved
overexpression of the engineered protein, could have
increased the level of proteins that were not
associated specifically, and made the interpretation 
of the results more difficult.

Data integration

We have seen that both genome-wide and smaller
conventional interaction datasets can be noisy and
inaccurate. If the noise is not systematically biased, 
it should be possible to improve the accuracy of the
datasets by integrating the information within 
them. The recent trend is to combine a variety of
experimental information – including transcription
co-expression, co-localization, essentiality
information (i.e. whether a gene is essential for the
viability of the cell) and functional annotations – to
help predict and validate protein–protein interactions
[8–10,35–39]. In general, data integration, combining
multiple independent sources, should increase the
degree to which the known complex interactions are
found (i.e. increasing the coverage) while decreasing
the number of errors in the data [10,35,36].

We attempted to quantify the improvements in
merging datasets by using the structural information
for RNA polymerase II. As described in Table 1, the

false-positive rates in each of the RNA polymerase II
datasets ranged from 41 to 67%. We combined the
various interaction datasets for RNA polymerase II
using a simple Bayesian network (Table 1 and
supplementary material), where we essentially
multiplied the probability of interaction across the
various datasets. The combined data has a
false-positive rate of 30%, which is lower than that 
for any of the individual datasets. Moreover, the
combined data gives a complete coverage of the
45 possible subunit–subunit pairs in the RNA
polymerase II structure, whereas the individual
interaction studies only cover 6–35 of them. In other
words, in contrast to the merged dataset, none of 
the interaction studies in the literature provide
information on all of these possible interactions. 
(In particular, the sum of true positives and true
negatives is 36 in the combined data versus only 
23 or less for the individual datasets.)

Similarly, we can show the benefits of data
integration for the genome-wide datasets (Fig. 2). 
First, for each genome-wide dataset (e.g. the Gavin
TAP-tag set), we identified the fraction of interactions
that contain information about the MIPS complexes.
Then we looked at all possible pairwise intersections
among the genome-wide sets (e.g. Gavin and Ho) 
and again looked at how well they found the MIPS
complex interactions. Finally, we looked at triplet and
quadruplet intersections amongst the datasets
(e.g. Gavin and Ho and Uetz). One can see that as 
we progress from individual datasets to pairwise
intersections and then to even higher-order overlaps,
the accuracy increased (as measured by the fraction of
interactions that represent protein pairs within the
same MIPS complex). That is, in any individual
dataset, only a small fraction of the interactions
involved a partner within the same MIPS complex.
However, in the final, merged dataset, for instance,
the majority of the interactions were consistent with
the MIPS data.

The intersections of the datasets tend to be rather
small; however, together the datasets are
complementary and increase the amount of
interactions covered. These observations are
consistent with the results from the focused analysis
of RNA polymerase II.

A summary and a strategy

Our analysis has two main conclusions. First,
biochemical and genetic methods, when applied on 
a small or large scale, have, and will introduce
significant numbers of spurious interactions into the
datasets of binary protein interactions. Genome-wide
screens for individual protein–protein interactions
have yet to uncover the bulk of protein–protein
interactions. The validity of the interaction datasets
can be improved with the use of structural
information about protein complexes. Thus, it would
be difficult to consider mining the current binary
interaction data to model intracellular networks.
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Second, the in vivo pull-down methods,
particularly the TAP-tagging approach in yeast,
appears to have a sufficiently low false-negative rate
to warrant a comprehensive analysis of the yeast
genome. In such an approach, each protein in every
complex would be tagged and associated proteins
identified. The false-positive results would be
minimized by considering only the interactions
common to all proteins in the complex.

However, it is not clear whether the relative
success of the TAP-tagging approach will extend to
higher eukaryotes. The TAP-tagging method is
particularly powerful in yeast because the tagged
gene is inserted into the proper location in the
genome and under the normal transcriptional
controls. Higher eukaryotes do not have efficient
machinery for homologous recombination and
therefore making TAP-tagged proteins on a
genome-scale is impractical. Expression of the
tagged protein in higher eukaryotes will probably
have to be driven from a heterologous promoter, 
and the protein expressed in unnatural amounts. 

If this is the case, we can perhaps expect to get error
rates equivalent to those obtained by Ho and
colleagues (15–50% false negative and 63–77% 
false positive), who used this overexpression
approach in yeast.

Our analysis validates current efforts to create
databases that take into account the inherently
statistical and error-prone nature of the current
protein-interaction literature and genome-wide
experiments. If this is done correctly, one can achieve
tremendous benefit from systematically integrating
different datasets. Moreover, the networks being
described by the current interaction databases need
to be described in some sort of statistical or
probabilistic terms to be physically realistic. 
Second, it will be important to derive structures for
large protein complexes to provide precise and
accurate information on protein interactions. Indeed,
one of the most enduring values of large-scale
structural biology could be the identification of
accurate protein–protein interactions using complex
crystal structures.
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