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Abstract

This paper discusses a new method for capturing the complete ap-
pearanceof both synthetic and real world objects and scenes, repres-
enting this information, and then using this representation to render
images of the object from new camera positions. Unlike the shape
capture process traditionally used in computer vision and the render-
ing process traditionally used in computer graphics, our approach
does not rely on geometric representations. Instead we sample and
reconstruct a 4D function, which we call a Lumigraph. The Lu-
migraph is a subsetof the complete plenoptic function that describes
the flow of light at all positions in all directions. With the Lu-
migraph, new images of the object can be generated very quickly, in-
dependent of the geometric or illumination complexity of the scene
or object. The paper discusses a complete working system includ-
ing the capture of samples, the construction of the Lumigraph, and
the subsequent rendering of images from this new representation.

1 Introduction

The process of creating a virtual environment or object in computer
graphics begins with modeling the geometric and surface attributes
of the objects in the environment along with any lights. An image
of the environment is subsequently rendered from the vantage point
of a virtual camera. Great effort has been expendedto develop com-
puter aided design systems that allow the specification of complex
geometry and material attributes. Similarly, a great deal of work has
been undertaken to produce systems that simulate the propagation of
light through virtual environments to create realistic images.

Despite these efforts, it has remained difficult or impossible to
recreate much of the complex geometry and subtle lighting effects
found in the real world. The modeling problem can potentially be
bypassed by capturing the geometry and material properties of ob-
jects directly from the real world. This approach typically involves
some combination of cameras, structured light, range finders, and
mechanical sensing devices such as 3D digitizers. When success-
ful, the results can be fed into a rendering program to create images
of real objects and scenes. Unfortunately, these systems are still un-
able to completely capture small details in geometry and material
properties. Existing rendering methods also continue to be limited
in their capability to faithfully reproduce real world illumination,
even if given accurate geometric models.
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Quicktime VR [6] was one of the first systems to suggest that the
traditional modeling/rendering process can be skipped. Instead, a
series of captured environment maps allow a user to look around a
scene from fixed points in space. One can also flip through differ-
ent views of an object to create the illusion of a 3D model. Chen and
Williams [7] and Werner et al [30] have investigated smooth inter-
polation between images by modeling the motion of pixels (i.e., the
optical flow) as one moves from one camera position to another. In
Plenoptic Modeling [19], McMillan and Bishop discuss finding the
disparity of each pixel in stereo pairs of cylindrical images. Given
the disparity (roughly equivalent to depth information), they can
then move pixels to create images from new vantage points. Similar
work using stereo pairs of planar images is discussed in [14].

This paper extends the work begun with Quicktime VR and Plen-
optic Modeling by further developing the idea of capturing the com-
plete flow of light in a region of the environment. Such a flow is de-
scribed by a plenoptic function[1]. The plenoptic function is a five
dimensional quantity describing the flow of light at every 3D spa-
tial position (x; y; z) for every 2D direction (�; �). In this paper,
we discuss computational methods for capturing and representing
a plenoptic function, and for using such a representation to render
images of the environment from any arbitrary viewpoint.

Unlike Chen and Williams’ view interpolation [7] and McMil-
lan and Bishop’s plenoptic modeling [19], our approach does not
rely explicitly on any optical flow information. Such information
is often difficult to obtain in practice, particularly in environments
with complex visibility relationships or specular surfaces. We do,
however, use approximate geometric information to improve the
quality of the reconstruction at lower sampling densities. Previous
flow basedmethods implicitly rely on diffuse surface reflectance, al-
lowing them to use a pixel from a single image to represent the ap-
pearanceof a single geometric location from a variety of viewpoints.
In contrast, our approach regularly samples the full plenoptic func-
tion and thus makes no assumptions about reflectance properties.

If we consider only the subset of light leaving a bounded ob-
ject (or equivalently entering a bounded empty region of space),
the fact that radiance along any ray remains constant1 allows us to
reduce the domain of interest of the plenoptic function to four di-
mensions. This paper first discusses the representation of this 4D
function which we call a Lumigraph. We then discuss a system
for sampling the plenoptic function with an inexpensive hand-held
camera, and “developing” the captured light into a Lumigraph. Fi-
nally this paper describes how to use texture mapping hardware to
quickly reconstruct images from any viewpoint with a virtual cam-
era model. The Lumigraph representation is applicable to synthetic
objects as well, allowing us to encode the complete appearance of
a complex model and to rerender the object at speeds independent
of the model complexity. We provide results on synthetic and real
sequences and discuss work that is currently underway to make the
system more efficient.

1We are assuming the medium (i.e., the air) to be transparent.



2 Representation

2.1 From 5D to 4D

The plenoptic function is a function of 5 variables representing po-
sition and direction 2 . If we assume the air to be transparent then
the radiance along a ray through empty space remains constant. If
we furthermore limit our interest to the light leaving the convex hull
of a bounded object, then we only need to represent the value of the
plenoptic function along some surface that surrounds the object. A
cube was chosen for its computational simplicity (see Figure 1). At
any point in space, one can determine the radiance along any ray in
any direction, by tracing backwards along that ray through empty
space to the surface of the cube. Thus, the plenoptic function due to
the object can be reduced to 4 dimensions 3.

The idea of restricting the plenoptic function to some surround-
ing surface has been used before. In full-parallax holographic ste-
reograms [3], the appearance of an object is captured by moving a
camera along some surface (usually a plane) capturing a 2D array of
photographs. This array is then transferred to a single holographic
image, which can display the appearanceof the 3D object. The work
reported in this paper takes many of its concepts from holographic
stereograms.

Global illumination researchers have used the “surface restric-
ted plenoptic function” to efficiently simulate light-transfer between
regions of an environment containing complicated geometric ob-
jects. The plenoptic function is represented on the surface of a cube
surrounding some region; that information is all that is needed to
simulate the light transfer from that region of space to all other re-
gions [17]. In the context of illumination engineering, this idea has
been used to model and represent the illumination due to physical
luminaires. Ashdown [2] describes a gantry for moving a camera
along a sphere surrounding a luminaire of interest. The captured in-
formation can then be used to represent the light source in global
illumination simulations. Ashdown traces this idea of the surface-
restricted plenoptic function back to Levin [15].

A limited version of the work reported here has been described
by Katayama et al. [11]. In their system, a camera is moved along a
track, capturing a 1D array of images of some object. This inform-
ation is then used to generate new images of the object from other
points in space. Because they only capture the plenoptic function
along a line, they only obtain horizontal parallax, and distortion is
introduced as soon as the new virtual camera leaves the line. Finally,
in work concurrent to our own, Levoy and Hanrahan [16] represent
a 4D function that allows for undistorted, full parallax views of the
object from anywhere in space.

2.2 Parameterization of the 4D Lumigraph

There are many potential ways to parameterize the four dimensions
of the Lumigraph. We adopt a parameterization similar to that used
in digital holographic stereograms [9] and also used by Levoy and
Hanrahan [16]. We begin with a cube to organize a Lumigraph
and, without loss of generality, only consider for discussion a single
square face of the cube (the full Lumigraph is constructed from six
such faces).

2We only consider a snapshot of the function, thus time is eliminated.
Without loss of generality, we also consider only a monochromatic func-
tion (in practice 3 discrete color channels), eliminating the need to consider
wavelength. We furthermore ignore issues of dynamic range and thus limit
ourselves to scalar values lying in some finite range.

3In an analogous fashion one can reconstruct the complete plenoptic
function inside an empty convex region by representing it only on the sur-
face bounding the empty region. At any point inside the region, one can find
the light entering from any direction by finding that direction’s intersection
with the region boundary.
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Figure 1: The surface of a cube holds all the radiance information
due to the enclosed object.
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Figure 2: Parameterization of the Lumigraph

We choose a simple parameterization of the cube face with or-
thogonal axes running parallel to the sides labeled s and t (see Fig-
ure 1). Direction is parameterized using a second plane parallel to
the st plane with axes labeled u and v (Figure 2). Any point in the
4D Lumigraph is thus identified by its four coordinates (s; t; u; v),
the coordinates of a ray piercing the first plane at (s; t) and intersect-
ing the second plane at (u; v) (see Ray(s; t; u; v) in Figure 2). We
place the origin at the center of the uv plane, with the z axis normal
to the plane. The st plane is located at z = 1. The full Lumigraph
consists of six such pairs of planes with normals along the x,�x, y,
�y, z, and �z directions.

It will be instructive at times to consider two 2D analogs to the
4D Lumigraph. Figure 2(b) shows a 2D slice of the 4D Lumigraph
that indicates the u and s axes. Figure 2(c) shows the same arrange-
ment in 2D ray coordinates in which rays are mapped to points (e.g.,
ray(s; u) ) and points are mapped to lines.4

Figure 3 shows the relationship between this parameterization of
the Lumigraph and a pixel in some arbitrary image. Given a Lu-

4More precisely, a line in ray space represents the set of rays through a
point in space.
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Figure 3: Relationship between Lumigraph and a pixel in an arbit-
rary image

migraph, L, one can generate an arbitrary new image coloring each
pixel with the appropriate value L(s; t;u; v). Conversely given
some arbitrary image and the position and orientation of the cam-
era, each pixel can be considered a sample of the Lumigraph value
at (s; t; u; v) to be used to construct the Lumigraph.

There are many advantages of the two parallel plane parameter-
ization. Given the geometric description of a ray, it is computation-
ally simple to compute its coordinates; one merely finds its intersec-
tion with two planes. Moreover, reconstruction from this paramet-
erization can be done rapidly using the texture mapping operations
built into hardware on modern workstations (see section 3.6.2). Fi-
nally, in this parameterization, as one moves an eyepoint along the
st plane in a straight line, the projection on the uv plane of points on
the geometric object track along parallel straight lines. This makes it
computationally efficient to compute the apparent motion of a geo-
metric point (i.e., the optical flow), and to apply depth correction to
the Lumigraph.

2.3 Discretization of the 4D Parameterization

So far, the Lumigraph has been discussed as an unknown, con-
tinuous, four dimensional function within a hypercubical domain
in s; t; u; v and scalar range. To map such an object into a com-
putational framework requires a discrete representation. In other
words, we must choose some finite dimensional function space
within which the function resides. To do so, we choose a discrete
subdivision in each of the (s; t; u; v) dimensions and associate a
coefficient and a basis function (reconstruction kernel) with each 4D
grid point.

ChoosingM subdivisions in the s and t dimensions andN subdi-
visions in u and v results in a grid of points on the st and uv planes
(Figure 4). An st grid point is indexed with (i; j) and is located
at (si; tj). A uv grid point is indexed with (p; q) and is located at
(up; vq). A 4D grid point is indexed (i; j; p; q). The data value (in
fact an RGB triple) at this grid point is referred to as xi;j;p;q

2.3.1 Choice of Basis

We associate with each grid point a basis function Bi;j;p;q so that
the continuous Lumigraph is reconstructed as the linear sum

~L(s; t; u; v) =

MX
i=0

MX
j=0

NX
p=0

NX
q=0

xi;j;p;qBi;j;p;q (s; t; u; v)

where ~L is a finite dimensional Lumigraph that exists in the space
defined by the choice of basis.
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Figure 4: Discretization of the Lumigraph

For example, if we select constant basis functions (i.e., a 4D box
with value 1 in the 4D region closest to the associated grid point
and zero elsewhere), then the Lumigraph is piecewise constant, and
takes on the value of the coefficient of the nearest grid point.

Similarly, a quadralinearbasis function has a value of 1 at the grid
point and drops off to 0 at all neighboring grid points. The value
of ~L(s; t; u; v) is thus interpolated from the 16 grid points forming
the hypercube in which the point resides.

We have chosen to use the quadralinear basis for its computa-
tional simplicity and the C0 continuity it imposes on ~L. However,
because this basis is not band limited by the Nyquist frequency, and
thus the corresponding finite dimensional function space is not shift
invariant [24], the grid structure will be slightly noticeable in our
results.

2.3.2 Projection into the Chosen Basis

Given a continuous Lumigraph,L, and a choice of basis for the finite
dimensional Lumigraph, ~L, we still need to define a projection of
L into ~L (i.e., we need to find the coefficients x that result in an ~L
which is by some metric closest to L). If we choose the L2 distance
metric, then the projection is defined by integrating L against the
duals of the basis functions [8], given by the inner products,

xi;j;p;q =< L; ~Bi;j;p;q > (1)

In the case of the box basis,B = ~B. The duals of the quadralinear
basis functions are more complex, but these basis functions suffi-
ciently approximate their own duals for our purposes.

One can interpret this projection as point sampling L after it has
been low pass filtered with the kernel ~B. This interpretation is pur-
sued in the context of holographic stereograms by Halle [9]. One
can also interpret this projection as the result of placing a physical
or synthetic “skewed” camera at grid point (si; tj) with an aper-
ture corresponding to the bilinear basis and with a pixel centered at
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(up; vq) antialiased with a bilinear filter. This analogy is pursued in
[16].

In Figure 16 we show images generated from Lumigraphs. The
geometric scene consisted of a partial cube with the pink face in
front, yellow face in back, and the brown face on the floor. These
Lumigraphs were generated using two different quadrature meth-
ods to approximate equation 1, and using two different sets of basis
functions, constant and quadralinear. In (a) and (c) only one sample
was used to compute each Lumigraph coefficient. In these examples
severe ghosting artifacts can be seen. In (b) and (d) numerical integ-
ration over the support of ~B in stwas computed for each coefficient.
It is clear that best results are obtained using quadralinearbasis func-
tion, with a full quadrature method.

2.3.3 Resolution

An important decision is how to set the resolutions,M and N , that
best balance efficiency and the quality of the images reconstructed
from the Lumigraph. The choices for M and N are influenced by
the fact that we expect the visible surfaces of the object to lie closer
to the uv plane than the st plane. In this case, N , the resolution
of the uv plane, is closely related to the final image resolution and
thus a choice for N close to final image resolution works best (we
consider a range of resolutions from 128 to 512).

One can gain some intuition for the choice of M by observing the
2D subset of the Lumigraph from a single grid point on the uv plane
(seeu = 2 in Figure 5(a)). If the surface of the object lies exactly on
the uv plane at a gridpoint, then all rays leaving that point represent
samples of the radiance function at a single position on the object’s
surface. Even when the object’s surface deviates from the uv plane
as in Figure 5(b), we can still expect the function across the st plane
to remain smooth and thus a low resolution is sufficient. Thus a sig-
nificantly lower resolution for M than N can be expected to yield
good results. In our implementation we use values of M ranging
from 16 to 64.

2.3.4 Use of Geometric Information

Assuming the radiance function of the object is well behaved,know-
ledge about the geometry of the object gives us information about
the coherenceof the associatedLumigraph function, and can be used
to help define the shape of our basis functions.

Consider the ray (s;u) in a two-dimensional Lumigraph (Fig-
ure 6). The closest grid point to this ray is (si+1; up). However,
gridpoints (si+1; up�1) and (si; up+1) are likely to contain values
closer to the true value at (s; u) since these grid points represent
rays that intersect the object nearby the intersection with (s; u). This
suggests adapting the shape of the basis functions.

Supposewe know the depth value z at which ray (s; u) first inter-
sects a surface of the object. Then for a given si, one can compute a
corresponding u0 for a ray (si; u

0) that intersects the same geomet-
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Figure 7: An (s; u; v) slice of a Lumigraph

ric location on the object as the original ray (s; u)5 . Let the depth
z be 0 at the uv plane and 1 at the st plane. The intersections can
then be found by examining the similar triangles in Figure 6,

u0 = u + (s� si) z

1�z (2)

It is instructive to view the same situation as in Figure 6(a), plot-
ted in ray space (Figure 6(b)). In this figure, the triangle is the ray
(s; u), and the circles indicate the nearby gridpoints in the discrete
Lumigraph. The diagonal line passing through (s; u) indicates the
optical flow (in this case, horizontal motion in 2D) of the intersection
point on the object as one moves back and forth in s. The intersec-
tion of this line with si and si+1 occurs at u0 and u00 respectively.

Figure 7 shows an (s; u) slice through a three-dimensional
(s; u; v) subspace of the Lumigraph for the ray-traced fruitbowl
used in Figure 19. The flow of pixel motion is along straight lines in
this space, but more than one motion may be present if the scene in-
cludes transparency. The slope of the flow lines corresponds to the
depth of the point on the object tracing out the line. Notice how the
function is coherent along these flow lines [4].

We expect the Lumigraph to be smooth along the optical flow
lines, and thus it would be beneficial to have the basis functions ad-
apt their shape correspondingly. The remapping ofu andv values to
u0 and v0 performs this reshaping. The idea of shaping the support
of basis functions to closely match the structure of the function be-
ing approximated is used extensively in finite element methods. For
example, in the Radiosity method for image synthesis, the mesh of
elements is adapted to fit knowledgeabout the illumination function.

5Assuming there has been no change in visibility.
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Figure 8: (a) Support of an uncorrected basis function. (b) Support
of a depth corrected basis function. (c) Support of both basis func-
tions in ray space.

The new basis function B0

i;j;p;q (s; t;u; v) is defined by first
finding u0 and v0 using equation 2 and then evaluating B, that is

B
0

i;j;p;q(s; t; u; v) = Bi;j;p;q(s; t; u
0

; v
0)

Although the shape of the new depth corrected basis is complic-
ated, ~L(s; t;u; v) is still a linear sum of coefficients and the weights
of the contributing basis functions still sum to unity. However, the
basis is no longer representable as a tensor product of simple boxes
or hats as before. Figure 8 shows the supportof an uncorrected (light
gray) and a depth corrected (dark gray) basis function in 2D geomet-
ric space and in 2D ray space. Notice how the support of the depth
corrected basis intersects the surface of the object across a narrower
area compared to the uncorrected basis.

We use depth corrected quadralinear basis functions in our sys-
tem. The value of ~L(s; t; u; v) in the corrected quadralinear basis is
computed using the following calculation:

QuadralinearDepthCorrect(s,t,u,v,z)
Result = 0
hst = s1 � s0 /* grid spacing */
huv = u1 � u0
for each of the four (si; tj) surrounding (s; t)

u0 = u+ (s� si) � z=(1� z)
v0 = v + (t� tj) � z=(1� z)
temp = 0
for each of the four (up; vq) surrounding (u0; v0)

iterpWeight
uv

=
(huv� j up � u0 j) � (huv� j vq � v0 j)=h2uv

temp+= interpWeight
uv

� L(si; tj ; up; vq)
interpWeight

st
=

(hst� j si � s j) � (hst� j tj � t j)=h2st
Result += interpWeight

st
� temp

return Result

Figure 17 shows images generated from a Lumigraph using un-
corrected and depth corrected basis functions. The depth correction
was done using a 162 polygon model to approximate the original
70,000 polygons. The approximation was generated using a mesh
simplification program [10]. These images show how depth correc-
tion reduces the artifacts present in the images.

3 The Lumigraph System

This section discusses many of the practical implementation issues
related to creating a Lumigraph and generating images from it. Fig-
ure 9 shows a block diagram of the system. The process begins with
capturing images with a hand-held camera. From known markers
47
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Figure 9: The Lumigraph system

in the image, the camera’s position and orientation (its pose) is es-
timated. This provides enough information to create an approxim-
ate geometric object for use in the depth correction of (u; v) values.
More importantly, each pixel in each image acts as a sample of the
plenoptic function and is used to estimate the coefficients of the dis-
crete Lumigraph (i.e., to develop the Lumigraph). Alternatively, the
Lumigraph of a synthetic object can be generated directly by integ-
rating a set of rays cast in a rendering system. We only briefly touch
on compression issues. Finally, given an arbitrary virtual camera,
new images of the object are quickly rendered.

3.1 Capture for Synthetic Scenes

Creating a Lumigraph of a synthetic scene is straightforward. A
single sample per Lumigraph coefficient can be captured for each
gridpoint (i; j) by placing the center of a virtual pin hole camera at
(si; tj) looking down the z axis, and defining the imaging frustum
using the uv square as the film location. Rendering an image us-
ing this skewed perspective camera produces the Lumigraph coeffi-
cients. The pixel values in this image, indexed (p; q), are used as the
Lumingraph coefficientsxi;j;p;q . To perform the integration against
the kernel ~B, multiple rays per coefficient can be averaged by jit-
tering the camera and pixel locations, weighting each image using
~B. For ray traced renderings, we have used the ray tracing program
provided with the Generative Modeling package[25].

3.2 Capture for Real Scenes

Computing the Lumigraph for a real object requires the acquisition
of object images from a large number of viewpoints. One way in
which this can be accomplished is to use a special motion control
platform to place the real camera at positions and orientations coin-
cident with the (si; tj) gridpoints [16]. While this is a reasonable
solution, we are interested in acquiring the images with a regular
hand-held camera. This results in a simpler and cheaper system, and
may extend the range of applicability to larger scenes and objects.

To achieve this goal, we must first calibrate the camera to determ-
ine the mapping between directions and image coordinates. Next,
we must identify special calibration markers in each image and
compute the camera’s pose from these markers. To enable depth-
corrected interpolation of the Lumigraph, we also wish to recover
a rough geometric model of the object. To do this, we convert each
input image into a silhouette using a blue-screen technique, and then
build a volumetric model from these binary images.

3.2.1 Camera Calibration and Pose Estimation

Camera calibration and pose estimation can be thought of as two
parts of a single process: determining a mapping between screen
pixels and rays in the world. The parameters associated with this
process naturally divide into two sets: extrinsic parameters, which
define the camera’s pose (a rigid rotation and translation), and in-
trinsic parameters, which define a mapping of 3D camera coordin-
ates onto the screen. This latter mapping not only includes a per-
spective (pinhole) projection from the 3D coordinates to undistorted



Figure 10: The capture stage

image coordinates, but also a radial distortion transformation and a
final translation and scaling into screen coordinates [29, 31].

We use a camera with a fixed lens, thus the intrinsic parameters
remain constant throughout the process and need to be estimated
only once, before the data acquisition begins. Extrinsic parameters,
however, change constantly and need to be recomputed for each new
video frame. Fortunately, given the intrinsic parameters, this can be
done efficiently and accurately with many fewer calibration points.
To compute the intrinsic and extrinsic parameters, we employ an al-
gorithm originally developed by Tsai [29] and extended by Willson
[31].

A specially designed stage provides the source of calibration data
(see Figure 10). The stage has two walls fixed together at a right
angle and a base that can be detached from the walls and rotated in
90 degree increments. An object placed on such a movable base
can be viewed from all directions in the upper hemisphere. The
stage background is painted cyan for later blue-screen processing.
Thirty markers, each of which consists of several concentric rings
in a darker shade of cyan, are distributed along the sides and base.
This number is sufficiently high to allow for a very precise intrinsic
camera calibration. During the extrinsic camera calibration, only 8
or more markers need be visible to reliably compute a pose.

Locating markers in each image is accomplishedby first convert-
ing the image into a binary (i.e., black or white) image. A double
thresholding operator divides all image pixels into three groups sep-
arated by intensity thresholds T1 and T2. Pixels with an intensity
below T1 are considered black, pixels with an intensity above T2
are considered white. Pixels with an intensity between T1 and T2
are considered black only if they have a black neighbor, otherwise
they are considered white. The binary thresholded image is then
searched for connected components [23]. Sets of connected com-
ponents with similar centers of gravity are the likely candidates for
the markers. Finally, the ratio of radii in each marker is used to
uniquely identify the marker. To help the user correctly sample the
viewing space, a real-time visual feedback displays the current and
past locations of the camera in the view space (Figure 11). Marker
tracking, pose estimation, feedback display, and frame recording
takes approximately 1/2 second per frame on an SGI Indy.

3.3 3D Shape Approximation

The recovery of 3D shape information from natural imagery has
long been a focus of computer vision research. Many of these tech-
niques assume a particularly simple shape model, for example, a
polyhedral scenewhere all edgesare visible. Other techniques, such
as stereo matching, produce sparse or incomplete depth estimates.
To produce complete, closed 3D models, several approaches have
been tried. One family of techniques builds 3D volumetric models
48
Figure 11: The user interface for the image capture stage displays
the current and previous camera positions on a viewing sphere. The
goal of the user is to “paint” the sphere.

Figure 12: Segmented image plus volume construction

directly from silhouettes of the object being viewed [21]. Another
approach is to fit a deformable 3D model to sparse stereo data. Des-
pite over 20 years of research, the reliable extraction of accurate 3D
geometric information from imagery (without the use of active illu-
mination and positioning hardware) remains elusive.

Fortunately, a rough estimate of the shape of the object is enough
to greatly aid in the capture and reconstruction of images from a Lu-
migraph. We employ the octree construction algorithm described
in [26] for this process. Each input image is first segmented into a
binary object/background image using a blue-screen technique [12]
(Figure 12). An octree representation of a cube that completely en-
closes the object is initialized. Then for each segmented image, each
voxel at a coarse level of the octree is projected onto the image plane
and tested against the silhouette of the object. If a voxel falls outside
of the silhouette, it is removed from the tree. If it falls on the bound-
ary, it is marked for subdivision into eight smaller cubes. After a
small number of images are processed, all marked cubes subdivide.
The algorithm proceeds for a preset number of subdivisions, typic-
ally 4. The resulting 3D model consists of a collection of voxels de-
scribing a volume which is known to contain the object6 (Figure 12).
The external polygons are collected and the resulting polyhedron is
then smoothed using Taubin’s polyhedral smoothing algorithm [27].

3.4 Rebinning

As described in Equation 1, the coefficient associated with the basis
function Bi;j;p;q is defined as the integral of the continuous Lu-
migraph function multiplied by some kernel function ~B. This can
be written as

xi;j;p;q =

Z
L(s; t; u; v) ~Bi;j;p;q (s; t; u; v)ds dt du dv (3)

In practice this integral must be evaluated using a finite number of
samples of the function L. Each pixel in the input video stream
coming from the hand-held camera represents a single sample

6Technically, the volume is a superset of the visual hull of the object [13].



L(sk; tk; uk; vk), of the Lumigraph function. As a result, the
sample points in the domain cannot be pre-specified or controlled.
In addition, there is no guarantee that the incoming samples are
evenly spaced.

Constructing a Lumigraph from these samples is similar to the
problem of multidimensional scattered data approximation. In the
Lumigraph setting, the problem is difficult for many reasons. Be-
cause the samples are not evenly spaced, one cannot apply stand-
ard Fourier-based sampling theory. Because the number of sample
points may be large (� 108) and because we are working in a 4 di-
mensional space, it is too expensive to solve systems of equations
(as is done when solving thin-plate problems [28, 18]) or to build
spatial data structures (such as Delauny triangulations).

In addition to the number of sample points, the distribution of the
data samples have two qualities that make the problem particularly
difficult. First, the sampling density can be quite sparse, with large
gaps in many regions. Second, the sampling density is typically very
non-uniform.

The first of these problems has been addressed in a two dimen-
sional scattered data approximation algorithm describedby Burt [5].
In his algorithm, a hierarchical set of lower resolution data sets is
created using an image pyramid. Each of these lower resolutions
represents a “blurred” version of the input data; at lower resolutions,
the gaps in the data become smaller. This low resolution data is then
used to fill in the gaps at higher resolutions.

The second of these problems, the non-uniformity of the
sampling density, has been addressed by Mitchell [20]. He
solves the problem of obtaining the value of a pixel that has been
super-sampled with a non-uniform density. In this problem, when
averaging the sample values, one does not want the result to
be overly influenced by the regions sampled most densely. His
algorithm avoids this by computing average values in a number of
smaller regions. The final value of the pixel is then computed by
averaging together the values of these strata. This average is not
weighted by the number of samples falling in each of the strata.
Thus, the non-uniformity of the samples does not bias the answer.

For our problem, we have developed a new hierarchical al-
gorithm that combines concepts from both of these algorithms. Like
Burt, our method uses a pyramid algorithm to fill in gaps, and like
Mitchell, we ensure that the non-uniformity of the data does not bias
the “blurring” step.

For ease of notation, the algorithm is described in 1D, and will
use only one index i. A hierarchical set of basis functions is used,
with the highest resolution labeled0 and with lower resolutions hav-
ing higher indices. Associated with each coefficientxri at resolution
r is a weight wr

i . These weights determine how the coefficients at
different resolution levels are eventually combined. The use of these
weights is the distinguishing feature of our algorithm.

The algorithm proceeds in three phases. In the first phase, called
splat, the sample data is used to approximate the integral of Equa-
tion 3, obtaining coefficients x0i and weights w0

i . In regions where
there is little or no nearby sample data, the weights are small or zero.
In the second phase, called pull, coefficients are computed for basis
functions at a hierarchical set of lower resolution grids by combin-
ing the coefficient values from the higher resolution grids. In the
lower resolution grids, the gaps (regions where the weights are low)
become smaller (see figure 13). In the third phase, called push, in-
formation from the each lower resolution grid is combined with the
next higher resolution grid, filling in the gaps while not unduly blur-
ring the higher resolution information already computed.

3.4.1 Splatting

In the splatting phase, coefficients are computed by performing
Monte-Carlo integration using the following weighted average es-
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Figure 13: 2D pull-push. At lower resolutions the gaps are smaller.

timator:
w0
i =

P
k

~Bi(sk)

x0i = 1

w0
i

P
k

~Bi(sk)L(sk)
(4)

where sk denotes the domain location of sample k. If w0
i is 0, then

the x0i is undefined. If the ~Bi have compact support, then each
sample influences only a constant number of coefficients. There-
fore, this step runs in time linear in the number of samples.

If the sample points sk are chosen from a uniform distribution,
this estimator converges to the correct value of the integral in Equa-
tion (3), and for n sample points has a variance of approximately
1

n

R �
~Bi(s)L(s)� xi ~Bi(s)

�2
ds. This variance is similar to that

obtained using importance sampling, which is often much smaller
than the crude Monte Carlo estimator. For a full analysis of this es-
timator, see [22].

3.4.2 Pull

In the pull phase, lower resolution approximations of the function
are derived using a set of wider kernels. These wider kernels are
defined by linearly summing together the higher resolution kernels
( ~Br+1

i
=
P

k

~hk�2i ~B
r

k
) using some discrete sequence ~h. For lin-

ear “hat” functions, ~h[�1::1] is f 1
2
; 1; 1

2
g

The lower resolution coefficients are computed by combining the
higher resolution coefficients using ~h. One way to do this would be
to compute

wr+1

i
=

P
k

~hk�2i w
r

k

xr+1
i

= 1

w
r+1

i

P
k

~hk�2i w
r

k x
r

k

(5)

It is easy to see that this formula, which corresponds to the method
used by Burt, computes the same result as would the original estim-
ator (Equation (4)) applied to the wider kernels. Once again, this
estimator works if the sampling density is uniform. Unfortunately,
when looking on a gross scale, it is imprudent to assume that the data
is sampled uniformly. For example, the user may have held the cam-
era in some particular region for a long time. This non-uniformity
can greatly bias the estimator.

Our solution to this problem is to apply Mitchell’s reasoning to
this context, replacing Equation (5) with:

wr+1

i
=

P
k

~hk�2i min(wr

k; 1)

xr+1
i

= 1

w
r+1

i

P
k

~hk�2i min(wr

k; 1)x
r

k

The value 1 represents full saturation7, and the min operator is used
to place an upper bound on the degree that one coefficient in a highly

7Using the value 1 introduces no loss of generality if the normalization
of ~h is not fixed.



sampled region, can influence the total sum 8.
The pull stage runs in time linear in the number of basis function

summed over all of the resolutions. Because each lower resolution
has half the density of basis functions, this stage runs in time linear
in the number of basis functions at resolution 0.

3.4.3 Push

During the push stage, the lower resolution approximation is used to
fill in the regions in the higher resolution that have low weight 9 . If a
higher resolution coefficient has a high associated confidence (i.e.,
has weight greater than one), we fully disregard the lower resolu-
tion information there. If the higher resolution coefficient does not
have sufficient weight, we blend in the information from the lower
resolution.

To blend this information, the low resolution approximation of
the function must be expressed in the higher resolution basis. This is
done by upsampling and convolving with a sequenceh, that satisfies
Br+1

i
=
P

k
hk�2iB

r

k .
We first compute temporary values

twr

i =
P

k
hi�2k min(wr+1

k
; 1)

txri = 1

tw
r

i

P
k
hi�2k min(wr+1

k
; 1) xr+1

k

These temporary values are now ready to be blended with the values
x and w values already at level r.

x
r

i = tx
r

i (1�w
r

i ) + w
r

i x
r

i

w
r

i = tw
r

i (1�w
r

i ) + w
r

i

This is analogous to the blending performed in image compositing.

3.4.4 Use of Geometric Information

This three phase algorithm must be adapted slightly when using the
depth corrected basis functions B0. During the splat phase, each
sample rayL(sk; tk; uk; vk)must have its u and v values remapped
as explained in Section 2.3.4. Also, during the push and pull phases,
instead of simply combining coefficients using basis functions with
neighboring indices, depth corrected indices are used.

3.4.5 2D Results

The validity of the algorithm was tested by first applying it to a
2D image. Figure 18 (a) shows a set of scattered samples from the
well known mandrill image. The samples were chosen by picking
256 random line segments and sampling the mandrill very densely
along these lines 10. Image (b) shows the resulting image after the
pull/push algorithm has been applied. Image (c) and (d) show the
same process but with only 100 sample lines. The success of our al-
gorithm on both 2D image functions and 4D Lumigraph functions
leads us to believe that it may have many other uses.

3.5 Compression

A straightforward sampling of the Lumigraph requires a large
amount of storage. For the examples shown in section 4, we use,
for a single face, a 32� 32 sampling in (s; t) space and 256� 256

8This is actually less extreme that Mitchell’s original algorithm. In this
context, his algorithm would set all non-zero weights to 1.

9Variance measures could be used instead of weight as a measure of con-
fidence in this phase.
10We chose this type of sampling pattern because it mimics in many ways

the structure of the Lumigraph samples taken from a hand-held camera. In
that case each input video image is a dense sampling of the 4D Lumigraph
along a 2D plane.
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(u; v) images. To store the six faces of our viewing cube with 24-
bits per pixel requires 322 � 2562 � 6 � 3 = 1:125GB of storage.

Fortunately, there is a large amount of coherence between
(s; t; u; v) samples. One could apply a transform code to the 4D ar-
ray, such as a wavelet transform or block DCT. Given geometric in-
formation, we can expect to do even better by considering the 4D ar-
ray as a 2D array of images. We can then predict new (u; v) images
from adjacent images, (i.e., images at adjacent (s; t) locations). In-
traframe compression issues are identical to compressing single im-
ages (a simple JPEG compression yields about a 20:1 savings). In-
terframe compression can take advantage of increased information
over other compressionmethods such as MPEG. Since we know that
the object is static and know the camera motion between adjacent
images, we can predict the motion of pixels. In addition, we can
leverage the fact that we have a 2D array of images rather than a
single linear video stream.

Although we have not completed a full analysis of compression
issues, our preliminary experiments suggest that a 200:1 compres-
sion ratio should be achievable with almost no degradation. This
reduces the storage requirements to under 6MB. Obviously, further
improvements can be expected using a more sophisticated predic-
tion and encoding scheme.

3.6 Reconstruction of Images

Given a desired camera (position, orientation, resolution), the re-
construction phase colors each pixel of the output image with the
color that this camera would create if it were pointed at the real ob-
ject.

3.6.1 Ray Tracing

Given a Lumigraph, one may generate a new image from an arbit-
rary camera pixel by pixel, ray by ray. For each ray, the correspond-
ing (s; t; u; v) coordinates are computed, the nearby grid points are
located, and their values are properly interpolated using the chosen
basis functions (see Figure 3).

In order to use the depth corrected basis functions given an ap-
proximate object, we transform the (u; v) coordinates to the depth
corrected (u0; v0) before interpolation. This depth correction of the
(u; v) values can be carried out with the aid of graphics hardware.
The polygonal approximation of the object is drawn from the point
of view and with the same resolution as the desired image. Each ver-
tex is assigned a red, green, blue value corresponding to its (x;y; z)
coordinate resulting in a “depth” image. The corrected depth value
is found by examining the blue value in the corresponding pixel of
the depth image for the �z-faces of the Lumigraph cube (or the red
or green values for other faces). This information is used to find u0

and v0 with Equation 2.

3.6.2 Texture mapping

The expense of tracing a ray for each pixel can be avoided by recon-
structing images using texture mapping operations. The st plane it-
self is tiled with texture mapped polygons with the textures defined
by slices of the Lumigraph: texi;j(up; vq) = xi;j;p;q . In other
words, we have one texture associated with each st gridpoint.

Constant Basis
Consider the case of constant basis functions. Suppose we wish

to render an image from the desired camera shown in Figure 14. The
set of rays passing through the shaded square on the st plane have
(s; t) coordinates closest to the grid point (i; j). Suppose that theuv
plane is filled with texi;j . Then, when using constant basis func-
tions, the shaded region in the desired camera’s film plane should
be filled with the corresponding pixels in the shaded region of the
uv plane. This computation can be accomplished by placing a vir-
tual camera at the desired location, drawing a square polygon on the
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Figure 14: Texture mapping a portion of the st plane

st plane, and texture mapping it using the four texture coordinates
(u; v)0, (u; v)1, (u; v)2, and (u; v)3 to index into texi;j .

Repeating this process for each grid point on the st plane and
viewing the result from the desired camera results in a complete re-
construction of the desired image. Thus, if one has an M � M
resolution for the st plane, one needs to draw at most M2 texture
mapped squares, requiring on average, only one ray intersection for
each square since the vertices are shared. Since many of the M2

squares on the st plane are invisible from the desired camera, typic-
ally only a small fraction of these squares need to be rendered. The
rendering cost is independent of the resolution of the final image.

Intuitively, you can think of the st plane as a piece of holographic
film. As your eye moves back and forth you see different things at
the same point in st since each point holds a complete image.

Quadralinear Basis
The reconstruction of images from a quadralinear basis Lu-

migraph can also be performed using a combination of texture map-
ping and alpha blending. In the quadralinear basis, the support of
the basis function at i; j covers a larger square on the st plane than
does the box basis (see Figure 15(a)). Although the regions do not
overlap in the constant basis, they do in the quadralinear basis. For
a given pixel in the desired image, values from 16 4D grid points
contribute to the final value.

The quadralinear interpolation of these 16 values can be carried
out as a sequence of bilinear interpolations, first in uv and then in
st. A bilinear basis function is shown in Figure 15(b) centered at
grid point (i; j). A similar basis would lie over each grid point in
uv and every grid point in st.

Texture mapping hardware on an SGI workstation can automatic-
ally carry out the bilinear interpolation of the texture in uv. Unfortu-
nately, there is no hardware support for the st bilinear interpolation.
We could approximate the bilinear pyramid with a linear pyramid by
drawing the four triangles shown on the floor of the basis function
in Figure 15(b). By assigning� values to each vertex (� = 1 at the
center, and � = 0 at the outer four vertices) and using alpha blend-
ing, the final image approximates the full quadralinear interpolation
with a linear-bilinear one. Unfortunately, such a set of basis func-
tions do not sum to unity which causes serious artifacts.

A different pyramid of triangles can be built that does sum
to unity and thus avoids these artifacts. Figure 15(c) shows a
hexagonal region associated with grid point (i; j) and an associated
linear basis function. We draw the six triangles of the hexagon with
� = 1 at the center and � = 0 at the outside six vertices11. The
linear interpolation of � values together with the bilinear interpol-
ation of the texture map results in a linear-bilinear interpolation. In
practice we have found it to be indistinguishable from the full quad-

11The alpha blending mode is set to perform a simple summation.
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Figure 15: Quadralinear vs. linear-bilinear

ralinear interpolation. This process requires at most 6M2 texture
mapped, �-blended triangles to be drawn.

Depth Correction
As before, the (u; v) coordinates of the vertices of the texture

mapped triangles can be depth corrected. At interior pixels, the
depth correction is only approximate. This is not valid when there
are large depth changes within the bounds of the triangle. There-
fore, we adaptively subdivide the triangles into four smaller ones by
connecting the midpoints of the sides until they are (a) smaller than
a minimum screen size or (b) have a sufficiently small variation in
depth at the three corners and center. The � values at intermediate
vertices are the average of the vertices of the parent triangles.

4 Results

We have implemented the complete system described in this paper
and have created Lumigraphs of both synthetic and actual objects.
For synthetic objects, Lumigraphs can be created either from poly-
gon rendered or ray traced images. Computing all of the necessary
images is a lengthy process often taking weeks of processing time.

For real objects, the capture is performed with an inexpensive,
single chip Panasonicanalog video camera. The capture phase takes
less than one hour. The captured data is then “developed” into a Lu-
migraph. This off-line processing, which includes segmenting the
image from its background,creating an approximate volumetric rep-
resentation, and rebinning the samples, takes less than one day of
processing on an SGI Indy workstation.

Once the Lumigraph has been created, arbitrary new images of
the object or scene can be generated. One may generate these new
images on a ray by ray basis, which takes a few seconds per frame
at 450�450 resolution. If one has hardware texture mapping avail-
able, then one may use the acceleration algorithm described in Sec-
tion 3.6.2. This texture mapping algorithm is able to create multiple
frames per second from the Lumigraph on an SGI Reality Engine.
The rendering speed is almost independent of the desired resolution
of the output images. The computational bottleneck is moving the
data from main memory to the smaller texture cache.

Figure 19 shows images of a synthetic fruit bowl, an actual fruit
bowl, and a stuffed lion, generated from Lumigraphs. No geometric
information was used in the Lumigraph of the synthetic fruit bowl.
For the actual fruit bowl and the stuffed lion, we have used the ap-
proximate geometry that was computed using the silhouette inform-
ation. These images can be generated in a fraction of a second, inde-
pendent of scene complexity. The complexity of both the geometry
and the lighting effects present in these images would be difficult to
achieve using traditional computer graphics techniques.



5 Conclusion

In this paper we have described a rendering framework based on
the plenoptic function emanating from a static object or scene. Our
method makes no assumptions about the reflective properties of the
surfaces in the scene. Moreover, this representation does not require
us to derive any geometric knowledge about the scene such as depth.
However, this method does allow us to include any geometric know-
ledge we may compute, to improve the efficiency of the representa-
tion and improve the quality of the results. We compute the approx-
imate geometry using silhouette information.

We have developed a system for capturing plenoptic data using a
hand-held camera, and converting this data into a Lumigraph using a
novel rebinning algorithm. Finally, we have developedan algorithm
for generating new images from the Lumigraph quickly using the
power of texture mapping hardware.

In the examples shown in this paper, we have not captured the
complete plenoptic function surrounding an object. We have limited
ourselves to only one face of a surrounding cube. There should be
no conceptualobstacles to extending this work to complete captures
using all six cube faces.

There is much future work to be done on this topic. It will be
important to develop powerful compression methods so that Lu-
migraphs can be efficiently stored and transmitted. We believe that
the large degree of coherence in the Lumigraph will make a high
rate of compression achievable. Future research also includes im-
proving the accuracy of our system to reduce the amount of arti-
facts in the images created by the Lumigraph. With these extensions
we believe the Lumigraph will be an attractive alternative to tradi-
tional methods for efficiently storing and rendering realistic 3D ob-
jects and scenes.
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