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Abstract

This paper discussesa new method for capturing the complete ap-
pearanceof both synthetic and real world objectsand scenes, repres-
enting this information, and then using this representation to render
images of the object from new camera positions. Unlike the shape
captureprocesstraditionally used in computer visionand the render-
ing process traditionally used in computer graphics, our approach
does not rely on geometric representations. Instead we sample and
reconstruct a 4D function, which we call a Lumigraph. The Lu-
migraphisasubset of the complete plenoptic function that describes
the flow of light at all positions in all directions. With the Lu-
migraph, new images of the object can begenerated very quickly, in-
dependent of the geometric or illumination complexity of the scene
or object. The paper discussesa complete working system includ-
ing the capture of samples, the construction of the Lumigraph, and
the subsequent rendering of images from this new representation.

1 Introduction

The process of creating avirtual environment or object in computer
graphics beginswith modeling the geometric and surface attributes
of the objectsin the environment along with any lights. An image
of the environment is subsequently rendered from the vantage point
of avirtual camera. Great effort hasbeen expendedto develop com-
puter aided design systems that allow the specification of complex
geometry and material attributes. Similarly, agreat deal of work has
been undertakento produce systemsthat simulate the propagation of
light through virtual environmentsto create realistic images.

Despite these efforts, it has remained difficult or impossible to
recreate much of the complex geometry and subtle lighting effects
found in the real world. The modeling problem can potentially be
bypassed by capturing the geometry and material properties of ob-
jects directly from the real world. This approach typically involves
some combination of cameras, structured light, range finders, and
mechanical sensing devices such as 3D digitizers. When success-
ful, theresults can be fed into arendering program to createimages
of real objectsand scenes. Unfortunately, these systemsare still un-
able to completely capture small details in geometry and material
properties. Existing rendering methods also continue to be limited
in their capability to faithfully reproduce real world illumination,
even if given accurate geometric models.
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Quicktime VR [6] was one of thefirst systemsto suggest that the
traditional modeling/rendering process can be skipped. Instead, a
series of captured environment maps allow a user to look around a
scene from fixed points in space. One can aso flip through differ-
ent viewsof an object to create theillusion of a3D model. Chenand
Williams [7] and Werner et al [30] haveinvestigated smooth inter-
polation between images by modeling the motion of pixels(i.e., the
optical flow) as one moves from one camera position to another. In
Plenoptic Modeling [19], McMillan and Bishop discussfinding the
disparity of each pixel in stereo pairs of cylindrical images. Given
the disparity (roughly equivalent to depth information), they can
then move pixelsto createimagesfrom new vantage points. Similar
work using stereo pairs of planar imagesis discussedin [14].

This paper extendsthe work begunwith Quicktime VR and Plen-
optic Modeling by further devel oping theidea of capturing the com-
pleteflow of light in aregion of the environment. Such aflowisde-
scribed by a plenoptic function[1]. The plenoptic function is afive
dimensional quantity describing the flow of light at every 3D spa-
tial position (z, y, z) for every 2D direction (¢, ¢). In this paper,
we discuss computational methods for capturing and representing
a plenoptic function, and for using such a representation to render
images of the environment from any arbitrary viewpoint.

Unlike Chen and Williams' view interpolation [7] and McMil-
lan and Bishop'’s plenoptic modeling [19], our approach does not
rely explicitly on any optical flow information. Such information
is often difficult to obtain in practice, particularly in environments
with complex visibility relationships or specular surfaces. We do,
however, use approximate geometric information to improve the
quality of the reconstruction at lower sampling densities. Previous
flow based methodsimplicitly rely on diffuse surfacereflectance, al-
lowing them to use a pixel from a single image to represent the ap-
pearanceof asinglegeometriclocationfrom avariety of viewpoints.
In contrast, our approach regularly samplesthe full plenoptic func-
tion and thus makes no assumptions about refl ectance properties.

If we consider only the subset of light leaving a bounded ob-
ject (or equivalently entering a bounded empty region of space),
the fact that radiance along any ray remains constant' allows usto
reduce the domain of interest of the plenoptic function to four di-
mensions. This paper first discusses the representation of this 4D
function which we call a Lumigraph. We then discuss a system
for sampling the plenoptic function with an inexpensive hand-held
camera, and “developing” the captured light into a Lumigraph. Fi-
nally this paper describes how to use texture mapping hardware to
quickly reconstruct images from any viewpoint with a virtual cam-
eramodel. The Lumigraph representation is applicableto synthetic
objects aswell, allowing us to encode the complete appearance of
a complex model and to rerender the object at speeds independent
of the model complexity. We provide results on synthetic and real
seguencesand discuss work that is currently underway to make the
system more efficient.

1\We are assuming the medium (i.e., the air) to be transparent.



2 Representation

2.1 From 5Dto 4D

The plenoptic function is afunction of 5 variables representing po-
sition and direction 2. If we assume the air to be transparent then
the radiance along a ray through empty space remains constant. If
we furthermore limit our interest to the light leaving the convex hull
of abounded object, then we only need to represent the value of the
plenoptic function along some surface that surrounds the object. A
cubewas chosenfor its computational simplicity (see Figure 1). At
any point in space, one can determine the radiance along any ray in
any direction, by tracing backwards along that ray through empty
spaceto the surface of the cube. Thus, the plenoptic function dueto
the object can be reduced to 4 dimensions®.

Theidea of restricting the plenoptic function to some surround-
ing surface has been used before. In full-parallax holographic ste-
reograms [3], the appearance of an object is captured by moving a
cameraalong some surface (usually aplane) capturinga 2D array of
photographs. This array is then transferred to a single holographic
image, which can display the appearanceof the 3D object. Thework
reported in this paper takes many of its concepts from holographic
stereograms.

Global illumination researchers have used the “surface restric-
ted plenoptic function” to efficiently simulate light-transfer between
regions of an environment containing complicated geometric ob-
jects. The plenoptic function is represented on the surface of a cube
surrounding some region; that information is all that is needed to
simulate the light transfer from that region of spaceto all other re-
gions[17]. In the context of illumination engineering, thisideahas
been used to model and represent the illumination due to physical
luminaires. Ashdown [2] describes a gantry for moving a camera
along a spheresurrounding aluminaire of interest. The captured in-
formation can then be used to represent the light source in global
illumination simulations. Ashdown traces this idea of the surface-
restricted plenoptic function back to Levin [15].

A limited version of the work reported here has been described
by Katayamaet al. [11]. In their system, acamerais moved along a
track, capturing a 1D array of images of some object. Thisinform-
ation is then used to generate new images of the object from other
points in space. Because they only capture the plenoptic function
along aline, they only obtain horizontal parallax, and distortion is
introduced as soonasthe new virtual cameraleavestheline. Finaly,
in work concurrent to our own, Levoy and Hanrahan [16] represent
a4D function that allows for undistorted, full parallax views of the
object from anywherein space.

2.2 Parameterization of the 4D Lumigraph

There are many potential waysto parameterize the four dimensions
of the Lumigraph. We adopt a parameterization similar to that used
in digital holographic stereograms [9] and also used by Levoy and
Hanrahan [16]. We begin with a cube to organize a Lumigraph
and, without loss of generality, only consider for discussionasingle
square face of the cube (the full Lumigraph is constructed from six
such faces).

2We only consider a snapshot of the function, thus time is eliminated.
Without loss of generality, we also consider only a monochromatic func-
tion (in practice 3 discrete color channels), eliminating the need to consider
wavelength. We furthermore ignore issues of dynamic range and thus limit
ourselvesto scalar valueslying in some finite range.

3In an analogous fashion one can reconstruct the complete plenoptic
function inside an empty convex region by representing it only on the sur-
face bounding the empty region. At any point inside theregion, onecan find
the light entering from any direction by finding that direction’sintersection
with the region boundary.
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Figure 1: The surface of a cube holds all the radiance information
dueto the enclosed object.
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Figure 2: Parameterization of the Lumigraph

We choose a simple parameterization of the cube face with or-
thogonal axesrunning parallel to the sideslabeled s and ¢ (see Fig-
ure 1). Direction is parameterized using a second plane parallel to
the st plane with axeslabeled « and v (Figure 2). Any point in the
4D Lumigraph is thusidentified by its four coordinates (s, ¢, u, v),
thecoordinatesof aray piercing thefirst planeat (s, ¢) and intersect-
ing the second plane at (u, v) (see Ray(s, ¢, u, v) in Figure 2). We
placethe origin at the center of the uv plane, with the = axisnormal
to the plane. The st planeislocated at = = 1. The full Lumigraph
consistsof six such pairsof planeswith normalsalongthez, —z, y,
—y, z, and —z directions.

It will be instructive at times to consider two 2D analogsto the
4D Lumigraph. Figure 2(b) showsa 2D dlice of the 4D Lumigraph
that indicatesthe » and s axes. Figure 2(c) showsthe same arrange-
mentin 2D ray coordinatesin which raysare mappedto points(e.g.,
ray(s, u) ) and points are mapped to lines.*

Figure 3 showsthe relationship between this parameterization of
the Lumigraph and a pixel in some arbitrary image. Given a Lu-

4More precisely, aline in ray space represents the set of rays through a
pointin space.
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Figure 3: Relationship between Lumigraph and a pixel in an arbit-
rary image

migraph, L, one can generate an arbitrary new image coloring each
pixel with the appropriate value L(s, t,u,v). Conversely given
some arbitrary image and the position and orientation of the cam-
era, each pixel can be considered a sample of the Lumigraph value
at (s, t,u,v) to beusedto construct the Lumigraph.

There are many advantages of the two parallel plane parameter-
ization. Given the geometric description of aray, it is computation-
ally simpleto computeits coordinates; one merely findsitsintersec-
tion with two planes. Moreover, reconstruction from this paramet-
erization can be done rapidly using the texture mapping operations
built into hardware on modern workstations (see section 3.6.2). Fi-
nally, in this parameterization, as one moves an eyepoint along the
st planein astraight line, the projection on the uv plane of pointson
thegeometric object track along parallel straight lines. Thismakesit
computationally efficient to compute the apparent motion of a geo-
metric point (i.e., the optical flow), and to apply depth correction to
the Lumigraph.

2.3 Discretization of the 4D Parameterization

So far, the Lumigraph has been discussed as an unknown, con-
tinuous, four dimensional function within a hypercubical domain
in s, ¢, u,v and scalar range. To map such an object into a com-
putational framework requires a discrete representation. In other
words, we must choose some finite dimensional function space
within which the function resides. To do so, we choose a discrete
subdivision in each of the (s, ¢, u, v) dimensions and associate a
coefficient and abasisfunction (reconstruction kernel) with each 4D
grid point.

Choosing M subdivisionsinthe s and ¢ dimensionsand N subdi-
visionsin « and v resultsin agrid of points on the s¢ and uv planes
(Figure 4). An st grid point is indexed with (¢, 5) and is located
at (s, t;). A uwo grid point isindexed with (p, ¢) and is located at
(up, vq). A 4D grid point isindexed (¢, j, p, ). The datavalue (in
fact an RGB triple) at thisgrid point isreferred to as «; ;.4

2.3.1 Choice of Basis

We associate with each grid point a basis function B; ; » , SO that
the continuous Lumigraph is reconstructed asthe linear sum

M M N N

E(s7 tiu,v) = Z Z Z Z T3 j,p,a Bi,jpa (s, b u,v)

i=0 j=0 p=0 ¢=0

where L is afinite dimensional Lumigraph that exists in the space
defined by the choice of basis.
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Figure 4: Discretization of the Lumigraph

For example, if we select constant basis functions (i.e., a 4D box
with value 1 in the 4D region closest to the associated grid point
and zero el sewhere), then the Lumigraph is piecewise constant, and
takes on the value of the coefficient of the nearest grid point.

Similarly, aquadralinear basisfunction hasavalueof 1 at thegrid
point and drops off to 0 at al neighboring grid points. The value
of L(s,t, u, v) isthusinterpolated from the 16 grid points forming
the hypercubein which the point resides.

We have chosen to use the quadralinear basis for its computa-
tional simplicity and the C° continuity it imposeson L. However,
becausethis basisis not band limited by the Nyquist frequency, and
thus the corresponding finite dimensional function spaceis not shift
invariant [24], the grid structure will be slightly noticeable in our
results.

2.3.2 Projection into the Chosen Basis

GivenacontinuousLumigraph, 1., and achoiceof basisfor thefinite
dimensional Lumigraph, L, we still need to define a projection of
Linto L (i.e., we need to find the coefficients » that result in an L
which isby some metric closestto L). If we choosethe L? distance
metric, then the projection is defined by integrating L against the
duals of the basisfunctions[8], given by the inner products,

Tijpq =< L,Bijpq > (1)
In the case of the box basis, B = B. Thedualsof the quadralinear
basis functions are more complex, but these basis functions suffi-
ciently approximate their own duals for our purposes.

One can interpret this projection as point sampling L after it has
been low passfiltered with the kernel B. Thisinterpretation is pur-
sued in the context of holographic stereograms by Halle [9]. One
can also interpret this projection as the result of placing a physical
or synthetic “skewed” camera at grid point (s;, ¢;) with an aper-
ture corresponding to the bilinear basis and with a pixel centered at
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Figure 5: Choice of resolution on the uv plane

(up, vq) antialiased with abilinear filter. Thisanalogy is pursuedin
[16].

In Figure 16 we show images generated from Lumigraphs. The
geometric scene consisted of a partial cube with the pink face in
front, yellow face in back, and the brown face on the floor. These
Lumigraphs were generated using two different quadrature meth-
ods to approximate equation 1, and using two different sets of basis
functions, constant and quadralinear. In (a) and (c) only one sample
was used to compute each Lumigraph coefficient. Intheseexamples
severe ghosting artifacts can be seen. In (b) and (d) numerical integ-
ration over the support of 33 in st wascomputedfor each coefficient.
Itisclear that best results are obtained using quadralinear basisfunc-
tion, with afull quadrature method.

2.3.3 Resolution

An important decision is how to set the resolutions, M and N, that
best balance efficiency and the quality of the images reconstructed
from the Lumigraph. The choicesfor M and N are influenced by
the fact that we expect the visible surfaces of the object to lie closer
to the uv plane than the st plane. In this case, IV, the resolution
of the uv plane, is closely related to the final image resolution and
thus a choice for V close to final image resolution works best (we
consider arange of resolutions from 128 to 512).

One can gain someintuition for the choice of M by observing the
2D subset of the Lumigraph from asingle grid point on the wv plane
(seeu = 2 inFigure5(a)). If thesurfaceof the object lies exactly on
the uv planeat agridpoint, then all raysleaving that point represent
samples of the radiance function at a single position on the object’'s
surface. Even when the object’s surface deviates from the uv plane
asin Figure 5(b), we canstill expect the function acrossthe s¢ plane
to remain smooth and thus alow resolutionis sufficient. Thusasig-
nificantly lower resolution for A/ than N can be expected to yield
good results. In our implementation we use values of M ranging
from 16 to 64.

2.3.4 Use of Geometric Information

Assuming the radiancefunction of the objectiswell behaved, know-
ledge about the geometry of the object gives us information about
the coherenceof the associated L umigraph function, and can be used
to help define the shape of our basis functions.

Consider the ray (s,u) in a two-dimensional Lumigraph (Fig-
ure 6). The closest grid point to thisray is (si+1, up). However,
gridpoints (s;4+1, up—1) and (s;, up+1) arelikely to contain values
closer to the true value at (s, u) since these grid points represent
raysthat intersect the object nearby theintersectionwith (s, u). This
suggests adapting the shape of the basis functions.

Supposewe know the depth value z at whichray (s, u) firstinter-
sectsasurface of the object. Thenfor agiven s;, onecan computea
corresponding u’ for aray (si,u') that intersects the same geomet-
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Figure 6: Depth correction of rays

Figure 7: An (s, u,v) slice of aLumigraph

ric location on the object as the original ray (s, u)°. Let the depth
z be 0 at the uv planeand 1 at the st plane. The intersections can
then be found by examining the similar triangles in Figure 6,

u = u+ (s—si)= 2

It isinstructive to view the same situation asin Figure 6(a), plot-
ted in ray space (Figure 6(b)). In this figure, the triangle is the ray
(s, u), and the circles indicate the nearby gridpoints in the discrete
Lumigraph. The diagonal line passing through (s, «) indicates the
optical flow (in thiscase, horizontal motionin 2D) of theintersection
point on the object as one moves back and forth in s. Theintersec-
tion of thislinewith s; and ;11 occursat v’ and u” respectively.

Figure 7 shows an (s,u) slice through a three-dimensional
(s,u,v) subspace of the Lumigraph for the ray-traced fruitbowl
usedin Figure 19. Theflow of pixel motionisaongstraight linesin
this space, but more than one motion may be present if the scenein-
cludestransparency. The slope of the flow lines correspondsto the
depth of the point on the object tracing out the line. Notice how the
function is coherent along these flow lines [4].

We expect the Lumigraph to be smooth along the optical flow
lines, and thus it would be beneficial to havethe basis functions ad-
apt their shape correspondingly. The remapping of « and v valuesto
v’ and v’ performs this reshaping. The idea of shaping the support
of basis functionsto closely match the structure of the function be-
ing approximated is used extensively in finite element methods. For
example, in the Radiosity method for image synthesis, the mesh of
elementsisadaptedto fit knowledgeabout theillumination function.

5 Assuming there has been no change in visibility.



Figure 8: (a) Support of an uncorrected basis function. (b) Support
of adepth corrected basis function. (c) Support of both basis func-
tionsin ray space.

The new basis function B’; ; ,.q(s, t,u,v) is defined by first
finding u’ and v’ using equation 2 and then evaluating B, that is
B/

i,J,p,q(sv t,u,v) = Bijpalst, ', U/)

Although the shape of the new depth corrected basisis complic-
ated, E(s, t,u, v) isstill alinear sum of coefficientsand the weights
of the contributing basis functions still sum to unity. However, the
basisis no longer representable as a tensor product of simple boxes
or hatsasbefore. Figure 8 showsthe support of anuncorrected (light
gray) and adepth corrected (dark gray) basisfunctionin 2D geomet-
ric spaceand in 2D ray space. Notice how the support of the depth
corrected basisintersects the surface of the object acrossanarrower
area compared to the uncorrected basis.

We use depth corrected quadralinear basis functions in our sys-
tem. Thevalue of E(s, t, u, v) inthe corrected quadralinear basisis
computed using the following calculation:

QuadralinearDepthCorrect(s,t,u,v,z)
Result =0
he =51 —so /* grid spacing */
huv = U1 — Uo
for each of thefour (s;, ;) surrounding (s, t)
w =u+(s—si)xz/(1—2)
v'=v+4(t—t;)xz/(1 —2)
temp =0
for each of the four (uy, v4) surrounding (v, v')
iterpWeight ,, =
(huo— [ up —u" ) * (huo— | vg — 0" [) [R5,
temp + = interpWeight ,, * L(si, 5, up, vg)
interpWeight ., =
(het=1 si— s ])* (hae— | t; =t |)/h2;
Result += interpWeight _, * temp
return Result

v

Figure 17 shows images generated from a Lumigraph using un-
corrected and depth corrected basisfunctions. The depth correction
was done using a 162 polygon model to approximate the original
70,000 polygons. The approximation was generated using a mesh
simplification program [10]. Theseimages show how depth correc-
tion reduces the artifacts present in the images.

3 The Lumigraph System

This section discusses many of the practical implementation issues
related to creating a Lumigraph and generatingimagesfrom it. Fig-
ure 9 showsablock diagram of the system. The processbeginswith
capturing images with a hand-held camera. From known markers
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Figure 9: The Lumigraph system

in the image, the camera’s position and orientation (its pose) is es-
timated. This provides enough information to create an approxim-
ate geometric object for usein the depth correction of (u, v) values.
More importantly, each pixel in each image acts as a sample of the
plenoptic function and is used to estimate the coefficients of the dis-
crete Lumigraph (i.e., to developthe Lumigraph). Alternatively, the
Lumigraph of asynthetic object can be generated directly by integ-
rating a set of rays cast in arendering system. We only briefly touch
on compression issues. Finally, given an arbitrary virtual camera,
new images of the object are quickly rendered.

3.1 Capture for Synthetic Scenes

Creating a Lumigraph of a synthetic scene is straightforward. A
single sample per Lumigraph coefficient can be captured for each
gridpoint (¢, 5) by placing the center of avirtual pin hole cameraat
(si, t5) looking down the z axis, and defining the imaging frustum
using the wv sguare as the film location. Rendering an image us-
ing this skewed perspective camera producesthe L umigraph coeffi-
cients. Thepixel valuesin thisimage, indexed (p, ¢), areusedasthe
Lumingraph coefficientsz; ; » 4. To perform theintegration against
the kernel B, multiple rays per coefficient can be averaged by jit-
tering the camera and pixel locations, weighting each image using
B. For ray traced renderings, we have used the ray tracing program
provided with the Generative Modeling package[25)].

3.2 Capture for Real Scenes

Computing the Lumigraph for areal object requires the acquisition
of object images from a large number of viewpoints. One way in
which this can be accomplished is to use a special motion control
platform to placethe real cameraat positions and orientations coin-
cident with the (s;, ;) gridpoints [16]. While this is a reasonable
solution, we are interested in acquiring the images with a regular
hand-held camera. Thisresultsin asimpler and cheaper system, and
may extend the range of applicability to larger scenesand objects.

To achievethisgoal, wemust first calibrate the camerato determ-
ine the mapping between directions and image coordinates. Next,
we must identify special calibration markers in each image and
compute the camera’s pose from these markers. To enable depth-
corrected interpolation of the Lumigraph, we also wish to recover
arough geometric model of the object. To do this, we convert each
input imageinto asilhouette using a blue-screentechnique, and then
build a volumetric model from these binary images.

3.2.1 Camera Calibration and Pose Estimation

Camera calibration and pose estimation can be thought of as two
parts of a single process: determining a mapping between screen
pixels and rays in the world. The parameters associated with this
process naturally divide into two sets: extrinsic parameters, which
define the camera’s pose (a rigid rotation and translation), and in-
trinsic parameters, which define a mapping of 3D camera coordin-
ates onto the screen. This latter mapping not only includes a per-
spective (pinhole) projection from the 3D coordinatesto undistorted



Figure 10: The capture stage

image coordinates, but also aradial distortion transformation and a
final translation and scaling into screen coordinates 29, 31].

We use a camera with afixed lens, thus the intrinsic parameters
remain constant throughout the process and need to be estimated
only once, before the data acquisition begins. Extrinsic parameters,
however, change constantly and need to berecomputed for each new
video frame. Fortunately, given theintrinsic parameters, this can be
done efficiently and accurately with many fewer calibration points.
To computetheintrinsic and extrinsic parameters, we employ an al-
gorithm originally developed by Tsai [29] and extended by Willson
[31].

A specially designed stage providesthe source of calibration data
(see Figure 10). The stage has two walls fixed together at a right
angle and a base that can be detached from the walls and rotated in
90 degree increments. An object placed on such a movable base
can be viewed from all directions in the upper hemisphere. The
stage background is painted cyan for later blue-screen processing.
Thirty markers, each of which consists of several concentric rings
in a darker shade of cyan, are distributed along the sides and base.
This number is sufficiently high to allow for avery preciseintrinsic
camera calibration. During the extrinsic camera calibration, only 8
or more markers need be visible to reliably compute a pose.

Locating markersin eachimageis accomplishedby first convert-
ing the image into a binary (i.e., black or white) image. A double
thresholding operator dividesall image pixelsinto three groups sep-
arated by intensity thresholds 77 and 7. Pixels with an intensity
below T} are considered black, pixels with an intensity above 7>
are considered white. Pixels with an intensity between 77 and T2
are considered black only if they have a black neighbor, otherwise
they are considered white. The binary thresholded image is then
searched for connected components [23]. Sets of connected com-
ponentswith similar centers of gravity are the likely candidatesfor
the markers. Finally, the ratio of radii in each marker is used to
uniquely identify the marker. To help the user correctly sample the
viewing space, areal-time visual feedback displays the current and
past locations of the camerain the view space (Figure 11). Marker
tracking, pose estimation, feedback display, and frame recording
takes approximately 1/2 second per frame on an SGI Indy.

3.3 3D Shape Approximation

The recovery of 3D shape information from natural imagery has
long been afocus of computer vision research. Many of these tech-
niques assume a particularly simple shape model, for example, a
polyhedral scenewhereall edgesare visible. Other techniques, such
as stereo matching, produce sparse or incomplete depth estimates.
To produce complete, closed 3D models, several approaches have
been tried. One family of techniquesbuilds 3D volumetric models
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Figure 11: The user interface for the image capture stage displays
the current and previous camera positions on aviewing sphere. The
goal of the user isto “paint” the sphere.

Figure 12: Segmented image plus volume construction

directly from silhouettes of the object being viewed [21]. Another
approachisto fit adeformable 3D model to sparse stereo data. Des-
pite over 20 yearsof research, thereliable extraction of accurate 3D
geometric information from imagery (without the use of activeillu-
mination and positioning hardware) remains elusive.

Fortunately, arough estimate of the shape of the object is enough
to greatly aid in the capture and reconstruction of imagesfrom alL u-
migraph. We employ the octree construction algorithm described
in [26] for this process. Each input image is first segmented into a
binary object/backgroundimage using a blue-screentechnique [12]
(Figure 12). An octree representation of a cube that completely en-
closestheaobjectisinitialized. Then for each segmentedimage, each
voxel at acoarselevel of the octreeis projected onto theimage plane
and tested against the silhouette of the object. If avoxel fallsoutside
of the silhouette, it isremoved from thetree. If it falls on the bound-
ary, it is marked for subdivision into eight smaller cubes. After a
small number of images are processed, all marked cubessubdivide.
The algorithm proceeds for a preset number of subdivisions, typic-
ally 4. Theresulting 3D model consistsof a collection of voxelsde-
scribing avolumewhichisknownto containthe object® (Figure 12).
The external polygons are collected and the resulting polyhedronis
then smoothed using Taubin’spolyhedral smoothingalgorithm [27].

3.4 Rebinning

Asdescribed in Equation 1, the coefficient associated with the basis
function B; ;. 4 is defined as the integral of the continuous Lu-
migraph function multiplied by some kernel function B. This can
be written as

Tijpg = /L(s,t,u,v) B,'J,pyq(s,t,u,U)dsdtdudv 3)

In practice this integral must be evaluated using a finite number of
samples of the function L. Each pixel in the input video stream
coming from the hand-held camera represents a single sample

6 Technically, the volumeisasuperset of thevisual hull of the object [13].



L(sk, tx, ur,vr), of the Lumigraph function. As a result, the
sample points in the domain cannot be pre-specified or controlled.
In addition, there is no guarantee that the incoming samples are
evenly spaced.

Constructing a Lumigraph from these samplesis similar to the
problem of multidimensional scattered data approximation. In the
Lumigraph setting, the problem is difficult for many reasons. Be-
cause the samples are not evenly spaced, one cannot apply stand-
ard Fourier-based sampling theory. Becausethe number of sample
points may be large (= 10%) and becausewe are working in a4 di-
mensional space, it is too expensiveto solve systems of equations
(as is done when solving thin-plate problems [28, 18]) or to build
spatial data structures (such as Delauny triangulations).

In addition to the number of sample points, the distribution of the
data samples have two qualities that make the problem particularly
difficult. First, the sampling density can be quite sparse, with large
gapsinmany regions. Second, the sampling density istypically very
non-uniform.

Thefirst of these problems has been addressed in atwo dimen-
sional scattered dataapproximation algorithm described by Burt [5].
In his algorithm, a hierarchical set of lower resolution data setsis
created using an image pyramid. Each of these lower resolutions
representsa“ blurred” version of theinput data; at lower resolutions,
the gapsin the databecomesmaller. Thislow resolution dataisthen
used to fill in the gapsat higher resolutions.

The second of these problems, the non-uniformity of the
sampling density, has been addressed by Mitchell [20]. He
solves the problem of obtaining the value of a pixel that has been
super-sampled with a non-uniform density. In this problem, when
averaging the sample values, one does not want the result to
be overly influenced by the regions sampled most densely. His
algorithm avoids this by computing average values in a number of
smaller regions. The final value of the pixel is then computed by
averaging together the values of these strata. This average is not
weighted by the number of samples falling in each of the strata.
Thus, the non-uniformity of the samples does not bias the answer.

For our problem, we have developed a new hierarchical al-
gorithm that combinesconceptsfrom both of thesealgorithms. Like
Burt, our method uses a pyramid algorithm to fill in gaps, and like
Mitchell, we ensure that the non-uniformity of the data doesnot bias
the“blurring” step.

For ease of notation, the algorithm is described in 1D, and will
useonly oneindex :. A hierarchical set of basis functionsis used,
with the highest resol ution labeled 0 and with lower resolutionshav-
ing higher indices. Associatedwith each coefficient ! at resolution
r isaweight w;. These weights determine how the coefficients at
different resolution levelsare eventually combined. Theuseof these
weightsis the distinguishing feature of our algorithm.

Thealgorithm proceedsin three phases. In the first phase, called
splat, the sample data is used to approximate the integral of Equa-
tion 3, obtaining coefficients #? and weights w?. In regions where
thereislittle or no nearby sampledata, the weightsare small or zero.
In the second phase, called pull, coefficients are computed for basis
functions at a hierarchical set of lower resolution grids by combin-
ing the coefficient values from the higher resolution grids. In the
lower resolution grids, the gaps (regions where the weights are low)
become smaller (see figure 13). In the third phase, called push, in-
formation from the each lower resolution grid is combined with the
next higher resolution grid, filling in the gapswhile not unduly blur-
ring the higher resolution information already computed.

3.4.1 Splatting

In the splatting phase, coefficients are computed by performing
Monte-Carlo integration using the following weighted average es-
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Figure 13: 2D pull-push. At lower resolutionsthe gaps are smaller.

timator: ~
w) = > i Bilsk)
z? = Zk Bi(sk) L(sk)

z

4)

-

where s;, denotesthe domain location of sample k. If w? is0, then
the %0 is undefined. If the B; have compact support, then each
sample influences only a constant number of coefficients. There-
fore, this step runsin time linear in the number of samples.

If the sample points s, are chosen from a uniform distribution,
this estimator convergesto the correct value of the integral in Equa-
tion (3), and for » sample points has a variance of approximately
L [ (Bi(s) L(s) — @i Bi(s))” ds. This varianceis similar to that
obtained using importance sampling, which is often much smaller
than the crude Monte Carlo estimator. For afull analysisof this es-
timator, see[22].

3.4.2 Pull

In the pull phase, lower resolution approximations of the function
are derived using a set of wider kernels. These wider kernels are
defined by linearly summing together the higher resolution kernels
(B[t =3, hx—2:B}) using some discrete sequence . For lin-
ear “hat” functions, h[—1..1]is{1,1,1}

Thelower resolution coefficients are computed by combining the

higher resolution coefficientsusing ». One way to do thiswould be
to compute

r+1 7 T
Wt = 5, e uj

r+1 . [
] 2o i wi T

©)

1
1

z

w

It is easy to seethat this formula, which correspondsto the method
used by Burt, computes the same result aswould the original estim-
ator (Equation (4)) applied to the wider kernels. Once again, this
estimator works if the sampling density is uniform. Unfortunately,
whenlooking onagrossscale, it isimprudent to assumethat the data
issampled uniformly. For example, the user may haveheld thecam-
erain some particular region for along time. This non-uniformity
can greatly bias the estimator.

Our solution to this problem is to apply Mitchell’s reasoning to
this context, replacing Equation (5) with:

wir‘l'l = Zk B2 min(w
x?"’l = Zk hi—2; min(w

K
1 T
r+1 k
Thevalue 1 representsfull saturation’, and the min operator is used
to placean upper bound on the degreethat one coefficientin ahighly

~7 Using the value 1 introduces no loss of generality if the normalization
of hisnot fixed.



sampled region, can influence the total sum ®.

Thepull stagerunsin time linear in the number of basis function
summed over all of the resolutions. Because each lower resolution
has half the density of basis functions, this stage runsin time linear
in the number of basisfunctions at resolution 0.

3.4.3 Push

During the push stage, the lower resolution approximation isusedto
fill in theregionsin the higher resolution that havelow weight® . If a
higher resolution coefficient has a high associated confidence (i.e.,
has weight greater than one), we fully disregard the lower resolu-
tion information there. If the higher resolution coefficient does not
have sufficient weight, we blend in the information from the lower
resolution.

To blend this information, the low resolution approximation of
thefunction must be expressedin the higher resolution basis. Thisis
doneby upsampling and convolving with asequencer, that satisfies
Bt =3 hi_2iBj.

We first compute temporary values

tw! = Zk hi_ok min(wlz‘i'l7 1
tr] = tw% Zk hi_ok min(wlz‘i'l7 1) xZ‘H
Thesetemporary valuesare now ready to be blended with the values
x and w values already at level r.
z; = tr{ (1 —wl)+ w z;
w; = tw (l—w)+w

Thisis analogousto the blending performed in image compositing.

3.4.4 Use of Geometric Information

Thisthree phase algorithm must be adapted slightly when using the
depth corrected basis functions B’. During the splat phase, each
sampleray L(sk, tx, uk, vx) must haveits u and v valuesremapped
asexplainedin Section 2.3.4. Also, during the push and pull phases,
instead of simply combining coefficients using basis functions with
neighboring indices, depth corrected indices are used.

3.45 2D Results

The validity of the algorithm was tested by first applying it to a
2D image. Figure 18 (a) showsa set of scattered samplesfrom the
well known mandrill image. The samples were chosen by picking
256 random line segments and sampling the mandrill very densely
along these lines *°. Image (b) shows the resulting image after the
pull/push algorithm has been applied. Image (c) and (d) show the
same process but with only 100 samplelines. The successof our al-
gorithm on both 2D image functions and 4D Lumigraph functions
leads usto believe that it may have many other uses.

3.5 Compression

A straightforward sampling of the Lumigraph requires a large
amount of storage. For the examples shown in section 4, we use,
for asingleface, a32 x 32 samplingin (s, t) spaceand 256 x 256

8 Thisis actually less extreme that Mitchell’s original algorithm. In this
context, his algorithm would set all non-zero weightsto 1.

9 Variance measurescould be used instead of weight asa measure of con-
fidencein this phase.

10\We chosethis type of sampling pattern becauseit mimicsin many ways

the structure of the Lumigraph samples taken from a hand-held camera. In
that case each input video image is a dense sampling of the 4D Lumigraph
aong a2D plane.
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(u,v) images. To store the six faces of our viewing cube with 24-
bits per pixel requires32% - 2562 - 6 - 3 = 1.125GB of storage.

Fortunately, there is a large amount of coherence between
(s, t, u, v) samples. One could apply atransform codeto the 4D ar-
ray, such asawavelet transform or block DCT. Given geometricin-
formation, we can expect to do even better by consideringthe 4D ar-
ray asa 2D array of images. We can then predict new (u, v) images
from adjacent images, (i.e., imagesat adjacent (s, ¢) locations). In-
traframe compressionissuesareidentical to compressing singleim-
ages (asimple JPEG compression yields about a 20:1 savings). In-
terframe compression can take advantage of increased information
over other compressionmethodssuch asMPEG. Sinceweknow that
the object is static and know the camera motion between adjacent
images, we can predict the motion of pixels. In addition, we can
leverage the fact that we have a 2D array of images rather than a
single linear video stream.

Although we have not completed afull analysis of compression
issues, our preliminary experiments suggest that a 200:1 compres-
sion ratio should be achievable with almost no degradation. This
reducesthe storage requirements to under 6MB. Obviously, further
improvements can be expected using a more sophisticated predic-
tion and encoding scheme.

3.6 Reconstruction of Images

Given a desired camera (position, orientation, resolution), the re-
construction phase colors each pixel of the output image with the
color that this camerawould create if it were pointed at the real ob-
ject.

3.6.1 Ray Tracing

Given a Lumigraph, one may generate a new image from an arbit-
rary camerapixel by pixel, ray by ray. For each ray, the correspond-
ing (s, t, u, v) coordinates are computed, the nearby grid points are
located, and their values are properly interpolated using the chosen
basis functions (see Figure 3).

In order to use the depth corrected basis functions given an ap-
proximate object, we transform the (u, v) coordinatesto the depth
corrected (u’, v') before interpolation. This depth correction of the
(u, v) values can be carried out with the aid of graphics hardware.
The polygonal approximation of the object is drawn from the point
of view andwith the sameresolution asthe desiredimage. Each ver-
tex isassignedared, green, bluevaluecorrespondingtoits (z, y, z)
coordinate resulting in a“depth” image. The corrected depth value
is found by examining the blue value in the corresponding pixel of
the depth image for the +-z-faces of the Lumigraph cube (or the red
or green valuesfor other faces). Thisinformation is used to find u’
and v’ with Equation 2.

3.6.2 Texture mapping

Theexpenseof tracing aray for each pixel can be avoided by recon-
structing images using texture mapping operations. The st planeit-
self istiled with texture mapped polygonswith the textures defined
by slices of the Lumigraph: tex; ;(up,vq) = xi;p,4. In other
words, we have one texture associated with each s¢ gridpoint.

Constant Basis

Consider the case of constant basis functions. Suppose we wish
to render animage from the desired camerashownin Figure 14. The
set of rays passing through the shaded square on the s¢ plane have
(s, t) coordinatesclosestto thegrid point (¢, 7). Supposethat theuv
plane isfilled with tex; ;. Then, when using constant basis func-
tions, the shaded region in the desired camera's film plane should
be filled with the corresponding pixels in the shaded region of the
uv plane. This computation can be accomplished by placing a vir-
tual cameraat the desired location, drawing asquare polygon on the



Desired Camera

Figure 14: Texture mapping a portion of the st plane

st plane, and texture mapping it using the four texture coordinates
(u,v)o, (u,v)1, (u,v)2, and (u, v)s to index into tex;, ;.

Repeating this process for each grid point on the st plane and
viewing the result from the desired cameraresultsin acomplete re-
construction of the desired image. Thus, if onehasan M x M
resolution for the st plane, one needs to draw at most M? texture
mapped squares, requiring on average, only oneray intersection for
each sguare since the vertices are shared. Since many of the />
squareson the st planeare invisible from the desired camera, typic-
ally only asmall fraction of these squares need to be rendered. The
rendering cost is independent of the resolution of the final image.

Intuitively, you canthink of the st plane asa pieceof holographic
film. Asyour eye movesback and forth you see different things at
the same point in st since each point holds a complete image.

Quadralinear Basis

The reconstruction of images from a quadralinear basis Lu-
migraph can also be performed using a combination of texture map-
ping and alpha blending. In the quadralinear basis, the support of
the basisfunction at ¢, j coversalarger square on the s¢ plane than
does the box basis (see Figure 15(a)). Although the regions do not
overlap in the constant basis, they do in the quadralinear basis. For
agiven pixel in the desired image, values from 16 4D grid points
contribute to the final value.

The quadralinear interpolation of these 16 values can be carried
out as a sequence of bilinear interpolations, first in wv and then in
st. A bilinear basis function is shown in Figure 15(b) centered at
grid point (z, ). A similar basis would lie over each grid point in
uv and every grid point in st¢.

Texture mapping hardware on an SGI workstation can automatic-
ally carry out thebilinear interpolation of thetexturein uv. Unfortu-
nately, thereis no hardware support for the s¢ bilinear interpolation.
We could approximatethebilinear pyramid with alinear pyramid by
drawing the four triangles shown on the floor of the basis function
in Figure 15(b). By assigning « valuesto each vertex (« = 1 at the
center, and « = 0 at the outer four vertices) and using alphablend-
ing, the final image approximatesthe full quadralinear interpolation
with a linear-bilinear one. Unfortunately, such a set of basis func-
tions do not sum to unity which causesserious artifacts.

A different pyramid of triangles can be built that does sum
to unity and thus avoids these artifacts. Figure 15(c) shows a
hexagonal region associated with grid point (s, ) and an associated
linear basisfunction. We draw the six triangles of the hexagonwith
a = 1 at the center and @ = 0 at the outside six vertices''. The
linear interpolation of « values together with the bilinear interpol-
ation of the texture map resultsin alinear-bilinear interpolation. In
practicewe have foundit to be indistinguishablefrom the full quad-

11 The alphablending mode is set to perform a simple summation.
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Figure 15: Quadralinear vs. linear-bilinear

ralinear interpolation. This process requires at most 6 M? texture
mapped, «-blended triangles to be drawn.

Depth Correction

As before, the (u, v) coordinates of the vertices of the texture
mapped triangles can be depth corrected. At interior pixels, the
depth correction is only approximate. Thisis not valid when there
are large depth changes within the bounds of the triangle. There-
fore, we adaptively subdividethetriangles into four smaller onesby
connecting the midpoints of the sidesuntil they are (a) smaller than
aminimum screen size or (b) have a sufficiently small variation in
depth at the three corners and center. The « values at intermediate
vertices are the average of the vertices of the parent triangles.

4 Results

We haveimplemented the complete system described in this paper
and have created Lumigraphs of both synthetic and actual objects.
For synthetic objects, Lumigraphs can be created either from poly-
gon rendered or ray traced images. Computing all of the necessary
images is alengthy process often taking weeks of processing time.

For real objects, the capture is performed with an inexpensive,
single chip Panasonicanal og video camera. The capture phasetakes
lessthan onehour. The captured datais then “ developed” into aL u-
migraph. This off-line processing, which includes segmenting the
imagefrom its background, creating an approximatevolumetric rep-
resentation, and rebinning the samples, takes less than one day of
processing on an SGI Indy workstation.

Once the Lumigraph has been created, arbitrary new images of
the object or scene can be generated. One may generate these new
images on a ray by ray basis, which takes a few seconds per frame
at 450 x 450 resolution. If one hashardware texture mapping avail-
able, then one may use the acceleration algorithm described in Sec-
tion 3.6.2. Thistexture mapping algorithm is ableto create multiple
frames per second from the Lumigraph on an SGI Reality Engine.
Therendering speed is almost independent of the desired resolution
of the output images. The computational bottleneck is moving the
data from main memory to the smaller texture cache.

Figure 19 showsimages of a synthetic fruit bowl, an actual fruit
bowl, and astuffed lion, generated from Lumigraphs. No geometric
information was used in the Lumigraph of the synthetic fruit bowl.
For the actual fruit bow! and the stuffed lion, we have used the ap-
proximate geometry that was computed using the silhouette inform-
ation. Theseimages can be generatedin afraction of asecond, inde-
pendent of scene complexity. The complexity of both the geometry
and the lighting effects present in theseimages would be difficult to
achieve using traditional computer graphics techniques.



5 Conclusion

In this paper we have described a rendering framework based on
the plenoptic function emanating from a static object or scene. Our
method makes no assumptions about the reflective properties of the
surfacesin the scene. Moreover, this representation does not require
usto derive any geometric knowledge about the scene such asdepth.
However, this method doesallow usto includeany geometric know-
ledge we may compute, to improve the efficiency of the representa-
tion and improve the quality of the results. We compute the approx-
imate geometry using silhouette information.

We have developed a system for capturing plenoptic datausing a
hand-held camera, and convertingthisdatainto aLumigraphusinga
novel rebinningalgorithm. Finally, we havedevelopedan algorithm
for generating new images from the Lumigraph quickly using the
power of texture mapping hardware.

In the examples shown in this paper, we have not captured the
complete plenoptic function surrounding an object. We havelimited
ourselvesto only one face of a surrounding cube. There should be
no conceptual obstaclesto extending this work to complete captures
using all six cube faces.

There is much future work to be done on this topic. It will be
important to develop powerful compression methods so that Lu-
migraphs can be efficiently stored and transmitted. We believe that
the large degree of coherencein the Lumigraph will make a high
rate of compression achievable. Future research also includesim-
proving the accuracy of our system to reduce the amount of arti-
factsin theimages created by the Lumigraph. With theseextensions
we believe the Lumigraph will be an attractive alternative to tradi-
tional methodsfor efficiently storing and rendering realistic 3D ob-
jects and scenes.
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