XML

eXtensible Markup Language

• User-defined tags: Metadata
• Tags give structure – hierarchy
 – Must be nested
• Tags have attributes

 <atag anattribute="avalue">
Specification

• **XSL** – eXtensible Style Language
 – How display information

• **DTD** = Document Type Declaration
 – User specifies own tags and attributes
 – User-defined grammar for syntax

• **XML schema** – similar to but more general than DTD
• XML “salvation” for searching dynamic objects and non-text objects

• Tags say what object is

=> return to “library model” – cataloging?
Semistructured Data Model

• XML gives structure, but not fully or rigidly specified
• Use labeled graph model
 – For XML get trees
 ▪ Node: atomic or compound object
 ▪ Leaves: values
Example

<students>
 <student>
 <year>2005</year>
 <name><fn>Joe</fn><ln>Jones</ln></name>
 <address>…</address>
 <course type="deptal">cos 425</course>
 <course type="elective">eng 331</course>
 etc.
 </student>
 <student></student>

</students>
students

student

year name address course1 course2 ... coursek

2005 fn ln ... cos425 eng331 psy101

Joe Jones
Querying XML

• Storing data in XML; want to query
• Could map to relational model, but then must restructure data
• Several querying languages
XQUERY

• Take a brief look at XQUERY
 – FOR path expression – anal. to SQL “FROM”
 – LET path expression
 – WHERE condition – anal. to SQL “WHERE”
 – RETURN – returns XML doc.
 Anal to SQL “SELECT”

• XQUERY returns XML fragment
Path expression

<table>
<thead>
<tr>
<th>Doc. Identifier</th>
<th>//</th>
<th>/</th>
</tr>
</thead>
<tbody>
<tr>
<td>e.g. URL</td>
<td>indicates element</td>
<td>indicates immed.</td>
</tr>
<tr>
<td>root of tree</td>
<td>nested anywhere-</td>
<td>child of path so</td>
</tr>
<tr>
<td></td>
<td>jump down tree</td>
<td>far</td>
</tr>
<tr>
<td></td>
<td>at this point in path</td>
<td></td>
</tr>
</tbody>
</table>

Returns set of matching elements
students

student

year name address course1 course2 ... coursek
2005 fn ln ... cos425 eng331 psy101
Joe Jones

...... Student
EXAMPLES

FOR x IN doc_id/name/ln
RETURN <Result>x</Result>

Gives: <Result><ln>Smith</ln></Result>
 <Result><ln>Jones</ln></Result>
 etc.

FOR b IN doc_id/students/student
WHERE $b/year$='2005'
RETURN <Result>$b/name/fn, $b/name/ln </Result>

Gives: <Result><fn>Joe</fn><ln><Jones></ln></Result>
 <Result> …. etc.
Beyond XML: Semantic Web

From W3C Semantic Web Activity Statement:
http://www.w3.org/2001/sw/Activity

"The goal of the Semantic Web initiative is as broad as that of the Web: to create a universal medium for the exchange of data. It is envisaged to smoothly interconnect personal information management, enterprise application integration, and the global sharing of commercial, scientific and cultural data."
Overview

- Initiative of W3C: World Wide Web Consortium - of academic, government and industry
 - begun 1994 by Tim Berners-Lee
- provides **common frameworks** for data specification allowing sophisticated functionality
 - Allowing automated understanding and use of information
- Two major frameworks:
 - Resource Description Framework (RDF),
 - Ontology Language (OWL)
- Open specifications, open source
 - Allow independently written tools interoperate
RDF

- Graph model to represent *resources* and relationships between them
 - Documents and other resources
- Formal semantics
- XML syntax
- URIs for naming – Uniform Resources Identifiers
 - Generalization of URLs
- Update released Feb 2004
RDF representation

• Represents “Web resources”
 – Documents on Web
 – Generalizes to “objects” identifiable but not directly retrievable, e.g. shopping facility

• Represents metadata for resources
 – Information about information
 ▪ Title, author, copyright of document
 – Price, shipping date of an item for sale
RDF Graph Model

- Nodes: resources and property values
- Edges: labeled with property identifiers (i.e. attribute names)

Example from http://www.w3.org/TR/rdf-primer/
"there is a Person identified by http://www.w3.org/People/EM/contact#me, whose name is Eric Miller, whose email address is em@w3.org, and whose title is Dr. "
Example: Graph representation

Nodes: 1. http://www.w3.org/People/EM/contact#me
 2. http://www.w3.org/2000/10/swap/pim/contact#Person
 3. Eric Miller
 4. mailto:em@w3.org
 5. Dr.

Edges:
1 -> 2 labeled http://www.w3.org/1999/02/22-rdf-syntax-ns#type
1 -> 3 labeled http://www.w3.org/2000/10/swap/pim/contact#fullName
1 -> 4 labeled http://www.w3.org/2000/10/swap/pim/contact#mailbox
1 -> 5 labeled http://www.w3.org/2000/10/swap/pim/contact#personTitle
Example: syntax

"<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">
 <contact:Person
 rdf:about="http://www.w3.org/People/EM/contact#me">
 <contact:fullName>Eric Miller</contact:fullName>
 <contact:mailbox rdf:resource="mailto:em@w3.org"/>
 <contact:personalTitle>Dr.</contact:personalTitle>
 </contact:Person>
</rdf:RDF> "
OWL

• Advanced support for software agents
 Programs that “understand” and can plan and act
 knowledge management
 Finding and exploiting complex interactions of information across sources

• Builds on RDF
• Represents ontologies
• Released Feb 2004
OWL expressiveness

- Ontology: “representation of terms and interrelationships”
 - very general
 - not just trees
- Has formal semantics
- Can represent relationships between classes
Example ontology
Example ontology
References

• Previous two pictures from Electronics and Telecommunications Research Institute of Korea ezOWL project, a Semantic Web Ontology Editor:
 http://iweb.etri.re.kr/ezowl/screenshot.html

• W3C semantic web:
 http://www.w3.org/2001/sw/
 http://www.w3.org/2001/sw/Activity

• W3C information on RDF:
 http://www.w3.org/TR/rdf-primer/

• W3C information on OWL:
 http://www.w3.org/2004/OWL/
 http://www.w3.org/TR/owl-features/

• Background on W3C:
 http://www.w3.org/Consortium/#background