Derivations for Temporal Models

For those who prefer a more formal treatment, below are formal derivations for the recursive formulas given in class for filtering, prediction, smoothing and finding the most likely sequence. R&N also provides such derivations, but the ones given here are meant to go along more closely with the way that I did things in class.

Filtering

We want to compute $P(x_t|e_{1:t})$. Note that, by definition of conditional probability,

$$P(x_t|e_{1:t}) = \frac{P(x_t, e_{1:t})}{P(e_{1:t})}$$

so $P(x_t|e_{1:t}) \propto P(x_t, e_{1:t})$ for any t.

We derive a recursive expression as follows:

$$P(x_{t+1}|e_{1:t+1}) \propto P(x_{t+1}, e_{1:t+1})$$

$$= \sum_{x_t} P(x_t, x_{t+1}, e_{1:t+1})$$

marginalization

$$= \sum_{x_t} P(x_t, e_{1:t}, x_{t+1}, e_{t+1})$$

breaking $e_{1:t+1}$ into $e_{1:t}$ and e_{t+1}

$$= \sum_{x_t} P(x_t, e_{1:t}) P(x_{t+1}, e_{t+1}|x_t, e_{1:t})$$

definition of conditional probability

$$= \sum_{x_t} P(x_t, e_{1:t}) P(x_{t+1}|x_t, e_{1:t}) P(e_{t+1}|x_{t+1}, x_t, e_{1:t})$$

definition of conditional probability

$$= \sum_{x_t} P(x_t, e_{1:t}) P(x_{t+1}|x_t) P(e_{t+1}|x_{t+1})$$

by the Markov assumptions (applied twice)

$$= P(e_{t+1}|x_{t+1}) \sum_{x_t} P(x_t|e_{1:t}) P(x_{t+1}|x_t)$$

factoring out a constant from the sum

$$\propto P(e_{t+1}|x_{t+1}) \sum_{x_t} P(x_t|e_{1:t}) P(x_{t+1}|x_t)$$

by the comments above.

Prediction

We want to compute $P(x_{t+k}|e_{1:t})$. We again derive a recursive expression:

$$P(x_{t+k+1}|e_{1:t}) = \sum_{x_{t+k}} P(x_{t+k}, x_{t+k+1}|e_{1:t})$$

using marginalization

$$= \sum_{x_{t+k}} P(x_{t+k}|e_{1:t}) P(x_{t+k+1}|x_{t+k}, e_{1:t})$$

definition of conditional probability

$$= \sum_{x_{t+k}} P(x_{t+k}|e_{1:t}) P(x_{t+k+1}|x_{t+k})$$

by the Markov assumptions.
Smoothness

We want to compute $P(x_k|e_{1:t})$, for $k < t$. We have:

\[P(x_k|e_{1:t}) \propto P(x_k, e_{1:t}) \]

by the usual argument

\[= P(x_k, e_{1:k}, e_{k+1:t}) \]

breaking up $e_{1:t}$ into $e_{1:k}$ and $e_{k+1:t}$

\[= P(x_k, e_{1:k}) P(e_{k+1:t}|x_k, e_{1:k}) \]

definition of conditional probability

\[= P(x_k, e_{1:k}) P(e_{k+1:t}|x_k) \]

by the Markov assumptions

\[\propto P(x_k|e_{1:k}) P(e_{k+1:t}|x_k). \]

We already saw how to compute $P(x_k|e_{1:k})$. For the other factor, we can do a recursive computation:

\[P(e_{k+1:t}|x_k) = \sum_{x_{k+1}} P(x_{k+1}, e_{k+1:t}|x_k) \]

marginalization

\[= \sum_{x_{k+1}} P(x_{k+1}|x_k) P(e_{k+1:t}|x_k, x_{k+1}) \]

definition of conditional probability

\[= \sum_{x_{k+1}} P(x_{k+1}|x_k) P(e_{k+1:t}|x_{k+1}) \]

by the Markov assumptions

\[= \sum_{x_{k+1}} P(x_{k+1}|x_k) P(e_{k+1,t}|x_{k+1}) \]

breaking up $e_{k+1:t}$

\[= \sum_{x_{k+1}} P(x_{k+1}|x_k) P(e_{k+1}|x_{k+1}) P(e_{k+2:t}|e_{k+1}, x_{k+1}) \]

definition of conditional probability

\[= \sum_{x_{k+1}} P(x_{k+1}|x_k) P(e_{k+1}|x_{k+1}) P(e_{k+2:t}|x_{k+1}) \]

by the Markov assumptions.

Finding the most likely sequence

We wish to find the state sequence $x_{1:t}$ that maximizes $P(x_{1:t}|e_{1:t})$. Since they only differ by a constant factor, this is the same as maximizing $P(x_{1:t}, e_{1:t})$. It is enough, for all x_t, to find the maximum over $x_{1:t-1}$, since then, as a final step, we can take a final maximum over x_t. In other words, we can use the fact that

\[\max_{x_{1:t}} P(x_{1:t}, e_{1:t}) = \max_{x_t} \left[\max_{x_{1:t-1}} P(x_{1:t}, e_{1:t}) \right]. \]
As usual, we will derive a recursive expression:

\[
\max_{x_{1:t-1}} P(x_{1:t}, e_{1:t})
\]

\[
= \max_{x_{1:t-1}} P(x_{1:t-1}, x_t, e_{1:t-1}, e_t)
\]

\[
= \max_{x_{1:t-1}} \left[P(x_{1:t-1}, e_{1:t-1}) P(x_t|x_{1:t-1}, e_{1:t-1}) P(e_t|x_t, x_{1:t-1}, e_{1:t-1}) \right]
\]

\[
= \max_{x_{1:t-1}} \left[P(x_{1:t-1}, e_{1:t-1}) P(x_t|x_{1:t-1}) P(e_t|x_t) \right]
\]

\[
= \max \max_{x_{1:t-2}} \left[P(x_t|x_{t-1}) P(e_t|x_t) \max_{x_{1:t-1}} P(x_{1:t-1}, e_{1:t-1}) \right]
\]

breaking up \(x_{1:t}\) and \(e_{1:t}\)

definition of conditional probability (applied repeatedly)

by the Markov assumptions (applied twice)

breaking up the maximum

factoring out constant terms from the inner maximum.