The training error theorem for boosting
Here is pseudocode for the AdaBoost boosting algorithm presented in class:

Given: (x1,y1),...,(xN,yny) where z; € X, y; € {—1,+1}
Initialize D, (i) = 1/N.
Fort=1,...,T:

Train weak learner using training data weighted according to distribution D;.
Get weak hypothesis h, : X — {—1,+1}.
Measure “goodness” of h; by its weighted error with respect to Dy:

€ = Prip, [ht(l’z’) # yi] = Z Dt(i)'
i:he (1) #yi
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Let at:—ln( et).
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Update:

Dy (i) = et if y; # hy(x;)

where Z; is a normalization factor (chosen so that D,.; will be a distribution).

Dy (4) X{ e if y; = hy(x;) (1)

Output the final classifier:

H(z) = sign (z ).

t=1

Although the notation is different, this algorithm is the same as in Fig. 18.10 of R&N.
In class, we proved the training error theorem, which states that the training error of H

1s at most .
exp (—2 Z ’yf)
t=1

where ¢, = % — Y.
We prove this in three steps.

Step 1: The first step is to show that
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N 114
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where

f(z) = ahy(z).
t
Proof: Note that Eq. (1) can be rewritten as

Dy (i) = Di(i) eXp(;tOétyz‘ht(l'i))




since y; and hy(x;) are both in {—1,4+1}. Unwrapping this recurrence, we get that
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Step 2: Next, we show that the training error of the final classifier H is at most

Proof:

1
training error(H) = N > { (1]

- w245

< %;exp(
= ZDT+1(i)

= HZt
t

T
11 2.
t=1

if y; # H(x;)
else

if y; f(x;) <0
else

—yif (x:))
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Step 3: The last step is to compute Z;.
We can compute this normalization constant as follows:

- . e~ if hy(z;) = y;
Zt = ZDt(z) x { e if hy(xz;) # yi

= Z Dy(i)e " + Z Dy(i)e™

i:ht(xi):yi ’ilht(ﬂ’fi)#yi

= e > Dyi)+e™
ithe(zs)=y;
= e M(1—¢)+ee

>, Di()

i:he(x:)#Yi

by definition of the training er-
ror

since H(z) = sign(f(z)) and
Y; c {—1, +1}

since e * > 1if 2 <0
by Step 1 above

since Dp,4 is a distribution

by definition of ¢

by our choice of o (which was
chosen to minimize this expres-
sion)

plugging in ¢ = % — VY

using 1 4+ x < e” for all real x

Combining with Step 2 gives the claimed upper bound on the training error of H.



