The training error theorem for boosting

Here is pseudocode for the AdaBoost boosting algorithm presented in class:

Given: \((x_1, y_1), \ldots, (x_N, y_N)\) where \(x_i \in X, y_i \in \{-1, +1\}\)

Initialize \(D_1(i) = 1/N\).

For \(t = 1, \ldots, T:\)

- Train weak learner using training data weighted according to distribution \(D_t\).
- Get weak hypothesis \(h_t: X \rightarrow \{-1, +1\}\).
- Measure “goodness” of \(h_t\) by its weighted error with respect to \(D_t\):
 \[
 \epsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i] = \sum_{i : h_t(x_i) \neq y_i} D_t(i).
 \]
- Let \(\alpha_t = 1/2 \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)\).
- Update:
 \[
 D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases}
 e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\
 e^{\alpha_t} & \text{if } y_i \neq h_t(x_i)
 \end{cases}
 \]
 where \(Z_t\) is a normalization factor (chosen so that \(D_{t+1}\) will be a distribution).

Output the final classifier:

\[
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right).
\]

Although the notation is different, this algorithm is the same as in Fig. 18.10 of R&N.

In class, we proved the training error theorem, which states that the training error of \(H\) is at most

\[
\exp \left(-2 \sum_{t=1}^{T} \gamma_t^2 \right)
\]

where \(\epsilon_t = \frac{1}{2} - \gamma_t\).

We prove this in three steps.

Step 1: The first step is to show that

\[
D_{T+1}(i) = \frac{1}{N} \cdot \frac{\exp(-y_i f(x_i))}{\prod_t Z_t}
\]

where

\[
f(x) = \sum_t \alpha_t h_t(x).
\]

Proof: Note that Eq. (1) can be rewritten as

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]
since \(y_i \) and \(h_t(x_i) \) are both in \(\{-1, +1\} \). Unwrapping this recurrence, we get that

\[
D_{T+1}(i) = D_1(i) \cdot \frac{\exp(-\alpha_1 y_i h_1(x_i))}{Z_1} \cdot \ldots \cdot \frac{\exp(-\alpha_T y_i h_T(x_i))}{Z_T}
\]

\[
= \frac{1}{N} \cdot \exp\left(-y_i \sum_t \alpha_t h_t(x_i)\right) \prod_t Z_t
\]

\[
= \frac{1}{N} \cdot \exp\left(-y_i f(x_i)\right).
\]

Step 2: Next, we show that the training error of the final classifier \(H \) is at most

\[
\prod_{t=1}^T Z_t.
\]

Proof:

\[
\text{training error}(H) = \frac{1}{N} \sum_i \left\{ \begin{array}{ll}
1 & \text{if } y_i \neq H(x_i) \\
0 & \text{else}
\end{array} \right. \quad \text{by definition of the training error}
\]

\[
= \frac{1}{N} \sum_i \left\{ \begin{array}{ll}
1 & \text{if } y_i f(x_i) \leq 0 \\
0 & \text{else}
\end{array} \right. \quad \text{since } H(x) = \text{sign}(f(x)) \text{ and } y_i \in \{-1, +1\}
\]

\[
\leq \frac{1}{N} \sum_i \exp(-y_i f(x_i)) \quad \text{since } e^{-z} \geq 1 \text{ if } z \leq 0
\]

\[
= \sum_i D_{T+1}(i) \prod_t Z_t \quad \text{by Step 1 above}
\]

\[
= \prod_t Z_t \quad \text{since } D_{T+1} \text{ is a distribution}
\]

Step 3: The last step is to compute \(Z_t \).

We can compute this normalization constant as follows:

\[
Z_t = \sum_i D_t(i) \times \left\{ \begin{array}{ll}
e^{-\alpha_t} & \text{if } h_t(x_i) = y_i \\
e^{\alpha_t} & \text{if } h_t(x_i) \neq y_i
\end{array} \right.
\]

\[
= \sum_{i: h_t(x_i) = y_i} D_t(i) e^{-\alpha_t} + \sum_{i: h_t(x_i) \neq y_i} D_t(i) e^{\alpha_t}
\]

\[
= e^{-\alpha_t} \sum_{i: h_t(x_i) = y_i} D_t(i) + e^{\alpha_t} \sum_{i: h_t(x_i) \neq y_i} D_t(i)
\]

\[
= e^{-\alpha_t} (1 - \epsilon_t) + e^{\alpha_t} \epsilon_t \quad \text{by definition of } \epsilon_t
\]

\[
= 2 \sqrt{\epsilon_t(1 - \epsilon_t)} \quad \text{by our choice of } \alpha_t \text{ (which was chosen to minimize this expression)}
\]

\[
= \sqrt{1 - 4\gamma_t^2} \quad \text{plugging in } \epsilon_t = \frac{1}{2} - \gamma_t
\]

\[
\leq e^{-2\gamma_t^2} \quad \text{using } 1 + x \leq e^x \text{ for all real } x
\]

Combining with Step 2 gives the claimed upper bound on the training error of \(H \).