
The training error theorem for boosting
Here is pseudocode for the AdaBoost boosting algorithm presented in class:

Given: (x1, y1), . . . , (xN , yN) where xi ∈ X, yi ∈ {−1, +1}
Initialize D1(i) = 1/N .
For t = 1, . . . , T :

• Train weak learner using training data weighted according to distribution Dt.
• Get weak hypothesis ht : X → {−1, +1}.
• Measure “goodness” of ht by its weighted error with respect to Dt:

εt = Pri∼Dt [ht(xi) 6= yi] =
∑

i:ht(xi)6=yi

Dt(i).

• Let αt =
1
2

ln
(1 − εt

εt

)
.

• Update:

Dt+1(i) =
Dt(i)
Zt

×
{

e−αt if yi = ht(xi)
eαt if yi 6= ht(xi)

(1)

where Zt is a normalization factor (chosen so that Dt+1 will be a distribution).

Output the final classifier:

H(x) = sign
(

T∑
t=1

αtht(x)
)

.

Although the notation is different, this algorithm is the same as in Fig. 18.10 of R&N.
In class, we proved the training error theorem, which states that the training error of H

is at most

exp
(
−2

T∑
t=1

γ2
t

)

where εt = 1
2 − γt.

We prove this in three steps.

Step 1: The first step is to show that

DT+1(i) =
1
N

· exp (−yif(xi))∏
t

Zt

where
f(x) =

∑
t

αtht(x).

Proof: Note that Eq. (1) can be rewritten as

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt

1



since yi and ht(xi) are both in {−1, +1}. Unwrapping this recurrence, we get that

DT+1(i) = D1(i) · exp (−α1yih1(xi))
Z1

· · · · · exp (−αT yihT (xi))
ZT

=
1
N

· exp (−yi
∑

t αtht(xi))∏
t Zt

=
1
N

· exp (−yif(xi))∏
t Zt

.

Step 2: Next, we show that the training error of the final classifier H is at most
T∏

t=1
Zt.

Proof:

training error(H) =
1
N

∑
i

{
1 if yi 6= H(xi)
0 else

by definition of the training er-
ror

=
1
N

∑
i

{
1 if yif(xi) ≤ 0
0 else

since H(x) = sign(f(x)) and
yi ∈ {−1, +1}

≤ 1
N

∑
i

exp(−yif(xi)) since e−z ≥ 1 if z ≤ 0

=
∑

i

DT+1(i)
∏
t

Zt by Step 1 above

=
∏
t

Zt since DT+1 is a distribution

Step 3: The last step is to compute Zt.
We can compute this normalization constant as follows:

Zt =
∑

i

Dt(i) ×
{

e−αt if ht(xi) = yi

eαt if ht(xi) 6= yi

=
∑

i:ht(xi)=yi

Dt(i)e−αt +
∑

i:ht(xi)6=yi

Dt(i)eαt

= e−αt
∑

i:ht(xi)=yi

Dt(i) + eαt
∑

i:ht(xi)6=yi

Dt(i)

= e−αt(1 − εt) + eαtεt by definition of εt

= 2
√

εt(1 − εt)
by our choice of αt (which was
chosen to minimize this expres-
sion)

=
√

1 − 4γ2
t plugging in εt = 1

2 − γt

≤ e−2γ2
t . using 1 + x ≤ ex for all real x

Combining with Step 2 gives the claimed upper bound on the training error of H .
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