
File Systems

• Abstraction
– Directories and Files instead of disks

• Protection

• Project: Simple UNIX-like File system

Inodes

• Which disk blocks go with which file.
• Inode: Data structure for bookkeeping

– List of Blocks
– File or Directory
– Link Count
– Other information…owner/permissions

Inode Structure
• Direct and Indirect Blocks Inodes

• Advantages:
– Fast access for small files (majority)
– Supports large files
– Supports sparse files

Directories

• Like a file: List of files and directories
– name
– inode number

• Can read it like a file
• Always has at least 2 entries:

– “.” current directory
– “..” parent directory

Super Block

• Contains the layout of the Disk
– Size of Disk
– Number of Inodes
– Number of Data Blocks
– Where inodes start, where data blocks start,

etc….

Super blocks (cont.)
• typedef struct {
• char signature[SIGN_SIZE]; /* Signature */
• int size; /* Size of file system in blocks */
• int root_inode; /* Inode no. of root directory */
• int inode_start; /* First block for inodes */
• int inode_blocks; /* Number of inode blocks */
• int bitmap_start; /* First block for bitmap */
• int bitmap_blocks; /* Number of blocks used to store the bitmap */
• int alloc_start; /* First block managed by the allocater */
• int num_blocks; /* Number of blocks for allocation */
• int free_blocks; /* Number of free blocks: Note: IGNORE this

since we do not want to update superblock frequently. */
• } superblock;

Disk Layout

Boot Block (Our OS == entire image)

Super Block

Inode Blocks

Allocation Bitmap

Allocation data Blocks

Project

• System calls to access file system
– mkfs: Formatting
– link, unlink:
– open: file creation
– close, read, write, lseek: file access
– mkdir, chdir, rmdir: directory stuff
– stat: information about a file or directory

Formatting(mkfs)

• Make a file system:
– Write superblock
– Mark inodes and data blocks to be free
– Create root directory
– initialize user file descriptor table

• fsck: Check integrity of file system
– provided

File Creation / Deletion

• link: Hard link to a file
– create a link to an existing file
– hard vs soft link

• unlink: Delete a file if link count == 0
– delete directory entry

File Access

• open: create file if it does not exist
• read:
• write:
• lseek: position in file
• close: free file descriptor

Directories

• Mkdir: make a directory
– create an entry in parent directory
– create two directories: “.”, “..”

• rmdir: remove directory if empty
• chdir: change the current directory

– For relative path names

Example: mkdir()

int fs_mkdir(char *file_name) {

if (file_name exists) return ERROR;

/* allocate data block */

/* allocate inode */

/* set directory entries for ‘.’, ‘..’ */

/* set inode entries appropriately *

/* update parent */

return SUCCESS

}

Doing the Assignment

• Most under Linux environment
– Use a file to simulate a disk (make lnxsh)
– code is provided (*Fake files)

• Should be able to move right over to our
OS.

• Shell supports
– System calls for File System
– Commands like “ls”, “cat”, “create” (create foo

200)

