
1

Project 5

Virtual Memory

2

Goals

Two-level page tables
Setup Page Directory & Page Tables
Read Soft. Devel. Manual Vol. 3 (Ch 2-4)

Page fault handler
Allocate physical page and bring in virtual page

Physical page frame management
page allocation & replacement
swap in & out

3

Two Level Virtual Memory

dir table offset

Virtual address

0122232

Page Directory
Page table

Base Addr. offset

Physical address

012321232

Flags

0

PDB

CR3

Entry Entry

4

In Words…

MMU uses CR3 and the first 10 bits of the
virtual addr to index into the page directory
and find the physical address of the page
table we need.
Then it uses the next 10 bits of the virtual
addr to index into the page table, find the
physical address of the actual page.
The lowest 12 bits are used as the offset in
the page.

5

Properties
Size of one Page Directory or one Page
Table or one Page is 4KB (2^12)
Page Directory is a Page Table for the Page
Tables

Avoids million entry page tables
Each Entry is 4 bytes (32 bits)

So one page can have 2^10 entries!
Each directory or table page is just a physical
page which must also be page aligned

6

Two-Level Page Tables(cont’d)

Base Address

Page table entry
6

1232

12345 0

Present/Absent
Read/Write
User/Supervisor

Accessed
Dirty

7

Protection bits
Present Bit (P)

If 1, then physical page is in memory
If 0, then other bits can be used to provide
information to help the OS bring in the page

Read/Write Bit (RW)
All pages can be read
If 1, page can be written to

User/Supervisor Bit (US)
If 1, page can be accessed in kernel or user mode
If 0, page can only be accessed in kernel mode

8

Each process (including the kernel) has its
own page directory and a set of page tables.
The address of page directory is in CR3
(page directory register) when the process is
running
CR3 is loaded with pcb->page_directory at
context switch

Done for you in the given code

How are page tables used?

9

Don’t forget to mask off extra bits when
using the base address from page table

PE_BASE_ADDR_MASK (see memory.h)

How are page tables
used?(cont’d)

10

BIOS data

Kernel code/data

free page frames

Video memory

0x1000

0xB8000

MEM_START

next_free_page

MAX_PHY_MEM

(0x100000) page0
page1
page2

pageN

Physical Memory Layout

...

11

Virtual Memory (Process) Layout

Kernel code/data,
Kernel stacks, etc

0x0

PROCESS_LOCATION

MAX_PHY_MEM

(0x1000000)
Process code/data

Process user stack
(one page, pinned in mem)MAX_VIRTUAL_MEM

(0xFFFFFFFF)

Kernel address space

User address space

12

pageN

page2

BIOS data

Kernel code/data

free page frames

Video mem

page0
page1

...

Kernel address Space
only accessible

in supervisor
mode(except Video mem)

code/data
accessible in user mode

user stack
(one page, pinned in mem)

Virtual-Physical Mapping

Virtual memory Physical memory

13

Virtual address Mapping

Kernel addresses are mapped to exactly
the same physical addresses
All threads share the same kernel address
space
Each process has its own address space.
It must also map the kernel address space
to the same physical address space

Allows direct access to the video buffer
14

Virtual address Mapping

So what do we need to do?
Setup kernel page tables that are shared by
all the threads. (In init_memory())
Setup process page tables when creating the
process (In setup_page_table())

Note: create_thread() also calls setup_page_table

15

Kernel page tables and Process page tables

Kernel page dir

Process page dir

page tab for code/data

page tab for user stack

page tab for kernel

Process Stack page

First level Second level

...

Kernel code/data

Process code/data

16

Some clarifications:

It is OK to setup only one page table for each
of the following:

kernel, process’ data/code and process’ user-stack.
(We assume that our data/code/stack size is not too big.)

The page directories and page tables are
themselves pages and must be allocated
using page_alloc()

17

Setup Kernel Page Table

Allocate and pin two physical pages: one for
kernel page directory and the other for kernel
page table

Do we need to allocate pages for kernel
code/data?

Fill in the kernel page table.
What value should be filled in the base_addr field
and the protection bits?

18

Setup Kernel Page
Table(cont’d)

Set US bit for video memory area
(SCREEN_ADDR in common.h)

User process’ require direct access
One page is enough

Don’t forget to map kernel page table into
kernel page directory
For threads, just store the address of the kernel
page directory into the pcb

19

Set up a Process’ Page Tables

Allocate and pin four physical pages for
each of the following:

Page directory, page table for code/data, page
table for stack, and stack page

Page Table entries in the Page Directory that
point to kernel page tables should be user
accessible

However, the kernel pages themselves should not
be user accessible, except for video memory

20

Set up a Process’ Page
Tables(cont’d)

Map the page tables into the page
directory
Fill in the page table for code/data pages

Which bits should be set?
Fill in the page table for user stack page

Which bits should be set here?
Don’t forget to store the physical address
of the page directory into

pcb->page_directory

21

Paging Mechanism

After init_memory(), the kernel enables
paging mode by setting CR0[PG] to one

Done in kernel.c
In dispatch(), the kernel load CR3 register
with current_running->page_directory

Done in scheduler.c

22

Paging Mechanism(Cont’d)
When the physical page of a virtual
address is not present in memory(the P bit
is not set), the MMU hardware will trigger a
page fault interrupt (int 14).
The exception handler saves the faulting
virtual address in
current_running->fault_addr
and then calls page_fault_handler()

done in interrupt.c

23

Page Fault Handler

That’s what you are to implement
Only code/data pages will incur page fault

all other pages (page directory, page tables, stack page) are
pinned in memory

So assume the page table is always there
and go directly to find the corresponding
entry for the faulting virtual address

You should never page fault on a page directory
or page table access

24

Page Fault Handler(Cont’d)

Allocate a physical page
Swap out another page if no free page is available

Fill in the page_map structure
Discussed in more detail later

Swap in the page from disk and map the
virtual page to the physical page

Similar to last assignment, use USB disk as
backing store

25

Physical Page Management—
The page_map structure

Defined in memory.c
An array that maintains the management
information of each physical page. All
physical pages are indexed by a page #
Fields in each page_map structure

The pcb that owns the page
Page_aligned virtual address of the page
The page table entry that points to this page
Pinned or not

26

Page Allocation

Implement page_alloc() in memory.c
A simple page allocation algorithm
If (there is a free page)

allocate it
Else

swap out a page and allocate it

27

Page Allocation(Cont’d)

How do we know whether there is a free
page and where it is?
If no free pages, which page to swap out?

Completely at your discretion
Be careful not to swap out a pinned page

28

Swap in and Swap out
From where and to where?

The process’ image is on the USB disk
Location and size are stored in pcb->swap_loc and
pcb->swap_size
Note: swap_loc, swap_size is in term of sectors!

The read()/write() utilities will be useful
(usb functions)
If the dirty bit (D bit) of the page table entry
is clear, do you still need to write the page
back?

29

Swap in and Swap out(Cont’d)

Be careful when reading or writing
The images on disk are sector-aligned (512 bytes)
not page-aligned (4KB)
Only swap in the data belonging to this process
Be careful not to overwrite other process’s image
when swapping out
Example: Swapping in a page of process 1, but the
page on the disk actually contains 3 sectors of
process 1 followed by 5 sectors of process 2
Don’t forget to modify the protection bits of the
corresponding page table entry after swapping in
or swapping out

30

Swap in and Swap out (Cont’d)
Invalidate TLB entry when swapping out a
page.

Use invalidate_page() which is done in memory.c
Note: we do not have different swap space for
different instances of same process. When
we swap a page out for a process, that page
will be written to the space allocated to store
that process on disk.
So in our implementation, each process can

only be started once.

31

Synchronization Issue

The page map array is accessed and
modified by multiple processes during
setup_page_table() and
page_fault_handler().
So what should we do?

32

Some clarifications:

Only the process’ code/data pages could be
swapped in or out. The following pages are
allocated for once and pinned in memory for
ever:
Page directories, page tables, user stack pages

It is OK not to reclaim the pages when a
process exits

33

Summary

You need to implement the following three
functions in memory.c:
init_memory(), setup_page_table(pcb_t *),
page_fault_handler()
You need also implement the following
auxiliary functions and use them in the
above three functions:
page_alloc(), page_replacement_policy(),
page_swap_out(), page_swap_in()
Add whatever other auxiliary functions you
need to make your code more readable

34

Extra Credit

FIFO replacement policy
Queue structure

FIFO with second chance
Use accessed bit

You may need to modify the page_map
structure we discussed here

35

About design review
Do you prefer:

Submit a write up of your design via email only.
Signup for individual review with TA. (You would still
need to do the writeup).

If we decide to use email, we can still arrange individual
group to do review with TA if your group wants to.

