Undirected Graphs

Undirected graphs
Adjacency lists
BFS
DFS
Euler tour

Why study graph algorithms?
- Challenging branch of computer science and discrete math.
- Hundreds of graph algorithms known.
- Thousands of practical applications.

Graph Applications

<table>
<thead>
<tr>
<th>Graph</th>
<th>Vertices</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>communication</td>
<td>telephones, computers</td>
<td>fiber optic cables</td>
</tr>
<tr>
<td>circuits</td>
<td>gates, registers, processors</td>
<td>wires</td>
</tr>
<tr>
<td>mechanical</td>
<td>joints</td>
<td>rods, beams, springs</td>
</tr>
<tr>
<td>hydraulic</td>
<td>reservoirs, pumping stations</td>
<td>pipelines</td>
</tr>
<tr>
<td>financial</td>
<td>stocks, currency</td>
<td>transactions</td>
</tr>
<tr>
<td>transportation</td>
<td>street intersections, airports</td>
<td>highways, airway routes</td>
</tr>
<tr>
<td>scheduling</td>
<td>tasks</td>
<td>precedence constraints</td>
</tr>
<tr>
<td>software systems</td>
<td>functions</td>
<td>function calls</td>
</tr>
<tr>
<td>internet</td>
<td>web pages</td>
<td>hyperlinks</td>
</tr>
<tr>
<td>games</td>
<td>board positions</td>
<td>legal moves</td>
</tr>
<tr>
<td>social relationship</td>
<td>people, actors</td>
<td>friendships, movie casts</td>
</tr>
<tr>
<td>neural networks</td>
<td>neurons</td>
<td>synapses</td>
</tr>
<tr>
<td>protein networks</td>
<td>proteins</td>
<td>protein-protein interactions</td>
</tr>
<tr>
<td>chemical compounds</td>
<td>molecules</td>
<td>bonds</td>
</tr>
</tbody>
</table>

Graph Jargon

Terminology.
- Vertex: \(v \).
- Edge: \(e = v - w \).
- Graph: \(G \).
- \(V \) vertices, \(E \) edges.
- Parallel edge, self loop.
- Directed, undirected.
- Sparse, dense.
- Path, cycle.
- Cyclic path, tour.
- Tree, forest.
- Connected, connected component.
A Few Graph Problems

Path. Is there a path between s to t?
Shortest path. What is the shortest path between two vertices?
Longest path. What is the longest path between two vertices?
Cycle. Is there a cycle in the graph?
Euler tour. Is there a cyclic path that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once?
Connectivity. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?
Bi-connectivity. Is there a vertex whose removal disconnects graph?
Planarity. Can you draw the graph in the plane with no crossing edges?
Isomorphism. Do two adjacency matrices represent the same graph?

Graph ADT in Java

Typical client program.
- Create a Graph.
- Pass the Graph to a graph processing routine, e.g., DFSearcher.
- Query the graph processing routine for information.
- Design pattern: separate graph from graph algorithm.

```java
public static void main(String args[]) {
    int V = Integer.parseInt(args[0]);
    int E = Integer.parseInt(args[1]);
    Graph G = new Graph(V, E);
    System.out.println(G);
    DFSearcher dfs = new DFSearcher(G);
    int comp = dfs.components();
    System.out.println("Components = "+ comp);
}
```

calculate number of connected components

Graph Representation

Vertex names. A B C D E F G H I J K L M
- This lecture: use integers between 0 and V-1.
- Real world: convert between names and integers with symbol table.

Two drawing represent same graph.

Set of edges representation.

Adjacency Matrix Representation

Adjacency matrix representation.
- Two-dimensional V x V boolean array.
- Edge v-w in graph: adj[v][w] = adj[w][v] = true.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>J</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

adjacency matrix
Adjacency Matrix: Java Implementation

```java
public class Graph {
    private int V; // number of vertices
    private int E; // number of edges
    private boolean[][] adj; // adjacency matrix

    // empty graph with V vertices
    public Graph(int V) {
        this.V = V;
        this.E = 0;
        this.adj = new boolean[V][V];
    }

    // insert edge v-w if it doesn't already exist
    public void insert(int v, int w) {
        if (!adj[v][w]) E++;
        adj[v][w] = true;
        adj[w][v] = true;
    }
}
```

Iterator

- Client needs way to iterate through elements of adjacency list.
- Graph implementation doesn’t want to reveal details of list.
- Design pattern: give client just enough to iterate.

```java
interface IntIterator {
    int next();
    boolean hasNext();
}
```

```
IntIterator i = G.neighbors(v);
while (i.hasNext()) {
    int w = i.next();
    // do something with edge v-w
}
```

Adjacency Matrix Iterator: Java Implementation

```java
public IntIterator neighbors(int v) {
    return new AdjMatrixIterator(v);
}

private class AdjMatrixIterator implements IntIterator {
    int v, w = 0;

    AdjMatrixIterator(int v) { this.v = v; }

    public boolean hasNext() {
        if (w == V) return false;
        if (adj[v][w]) return true;
        for (w = w; w < V; w++)
            if (adj[v][w]) return true;
        return false;
    }

    public int next() {
        if (hasNext()) return w++;
        return -1;
    }
}
```

Iterator Diversion: Java Collections

- Java uses interface `Iterator` with all of its collection data types.
- Its method `next` returns an `Object` instead of an `int`.
- Need to import `java.util.Iterator` and `java.util.ArrayList`.

```java
ArrayList list = new ArrayList();
...
list.add(value);
...
Iterator i = list.iterator();
while(i.hasNext()) {
    System.out.println(i.next());
}
```

- You can now write the `ArrayList` or `LinkedList` libraries and use an `Iterator` to traverse them.
Adjacency List Representation

Vertex indexed array of lists.
- Space proportional to number of edges.
- Two representations of each undirected edge.

Adjacency List: Java Implementation

```
public class Graph {
    private int V; // # vertices
    private int E; // # edges
    private AdjList[] adj; // adjacency lists

    private static class AdjList {
        int w;
        AdjList next;
        AdjList(int w, AdjList next) { this.w = w; this.next = next; }
    }

    public Graph(int V) {
        this.V = V;
        this.E = 0;
        adj = new AdjList[V];
    }

    public void insert(int v, int w) {
        adj[v] = new AdjList(w, adj[v]);
        adj[w] = new AdjList(v, adj[w]);
        E++;
    }
}
```

Adjacency List Iterator: Java Implementation

```
public IntIterator neighbors(int v) {
    return new AdjListIterator(adj[v]);
}

private class AdjListIterator implements IntIterator {
    AdjList x;
    AdjListIterator(AdjList x) { this.x = x; }

    public boolean hasNext() {
        return x != null;
    }

    public int next() {
        int w = x.w;
        x = x.next;
        return w;
    }
}
```

Graph Representations

Graphs are abstract mathematical objects.
- ADT implementation requires specific representation.
- Efficiency depends on matching algorithms to representations.

<table>
<thead>
<tr>
<th>Representation</th>
<th>Space</th>
<th>Edge between v and w?</th>
<th>Edge from v to anywhere?</th>
<th>Enumerate all edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjacency matrix</td>
<td>$O(V^2)$</td>
<td>$O(1)$</td>
<td>$O(V)$</td>
<td>$O(V^2)$</td>
</tr>
<tr>
<td>Adjacency list</td>
<td>$O(E + V)$</td>
<td>$O(E)$</td>
<td>$O(1)$</td>
<td>$O(E + V)$</td>
</tr>
</tbody>
</table>

Graphs in practice.
- Typically sparse.
- Typically bottleneck is iterating through all edges.
- Use adjacency list representation.
Graph Search

Goal. Visit every node and edge in Graph.
A solution. Depth-first search.

- To visit a node v:
 - mark it as visited
 - recursively visit all unmarked nodes w adjacent to v
- To traverse a Graph G:
 - initialize all nodes as unmarked
 - visit each unmarked node

Enables direct solution of simple graph problems.
 • Connected components.
 • Cycles.

Basis for solving more difficult graph problems.
 • Biconnectivity.
 • Planarity.

Connected Components

Define problem.
 • Disconnected pieces may be hard to spot, especially for computer!

Connected Components Application: Minesweeper

Challenge: implement the game of Minesweeper.

Critical subroutine.
 • User selects a cell and program reveals how many adjacent mines.
 • If zero, reveal all adjacent cells.
 • If any newly revealed cells have zero adjacent mines, repeat.

Connected Components Application: Image Processing

Challenge: read in a 2D color image and find regions of connected pixels that have the same color.
Connected Components Application: Image Processing

Challenge: read in a 2D color image and find regions of connected pixels that have the same color.

Efficient algorithm.
- Connect each pixel to neighboring pixel if same color.
- Find connected components in resulting graph.

| 0 1 1 1 1 6 6 8 9 9 9 | 0 0 0 1 6 6 6 8 8 11 11 |
| 3 0 0 1 6 6 4 8 11 11 11 |
| 3 0 0 1 1 6 2 11 11 11 11 |
| 10 10 10 10 1 1 2 11 11 11 11 |
| 7 7 2 2 2 2 2 11 11 11 11 |
| 7 7 5 5 5 2 2 11 11 11 11 |

Depth First Search: Connected Components

```java
class DFSearcher {
    private final static int UNMARKED = -1;
    private Graph G;
    private int[] cc;
    private int components = 0;
    public DFSearcher(Graph G) {
        this.G = G;
        this.cc = new int[cc.G.V()];
        for (int v = 0; v < G.V(); v++)
            cc[v] = UNMARKED;
        dfs();
    }
    public void dfs() {
        // NEXT SLIDE
    }
    public int component(int v) { return cc[v]; }
    public int components() { return components; }
}
```

// run dfs from each unmarked vertex
private void dfs() {
 for (int v = 0; v < G.V(); v++) {
 if (cc[v] == UNMARKED) {
 dfs(v);
 components++;
 }
 }
}

// depth first search
private void dfs(int v) {
 loop idiom
 cc[v] = components;
 IntIterator i = G.neighbors(v);
 while (i.hasNext()) {
 int w = i.next();
 if (cc[w] == UNMARKED) dfs(w);
 }
}

Path. Is there a path from s to t?

<table>
<thead>
<tr>
<th>Method</th>
<th>Preprocess Time</th>
<th>Query Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Union Find</td>
<td>O(E log* V)</td>
<td>O(log* V)</td>
<td>Θ(V)</td>
</tr>
<tr>
<td>DFS</td>
<td>o(E + V)</td>
<td>o(1)</td>
<td>Θ(V)</td>
</tr>
</tbody>
</table>

UF advantage. Dynamic: can intermix query and edge insertion.

DFS advantage.
- Can get path itself in same running time.
- Extends to more general problems.
Graphs and Mazes

Maze graphs.
- Vertices = intersections
- Edges = corridors.

DFS.
- Mark ENTRY and EXIT halls at each vertex.
- Leave by ENTRY when no unmarked halls.

Breadth First Search

Graph search. Visit all nodes and edges of graph.
Depth-first search. Put unvisited nodes on a STACK.
Breadth-first search. Put unvisited nodes on a QUEUE.

Shortest path: what is fewest number of edges to get from s to t?

Solution = BFS.
- Initialize dist[v] = ∞, dist[s] = 0.
- When considering edge v–w:
 - if w is marked, then ignore
 - otherwise else set dist[w] = dist[v] + 1,
 pred[w] = v, and add w to the queue

if you want to find shortest path itself

```java
public class BFSearcher {
    private static int INFINITY = Integer.MAX_VALUE;
    private Graph G;
    private int[] dist;
    public BFSearcher(Graph G, int s) {
        this.G = G;
        int V = G.V();
        dist = new int[V];
        for (int v = 0; v < V; v++) dist[v] = INFINITY;
        dist[s] = 0;
        bfs(s);
    }

    public int distance(int v) { return dist[v]; }

    private void bfs(int s) {
        IntQueue q = new IntQueue();
        q.enqueue(s);
        while (!q.isEmpty()) {
            int v = q.dequeue();
            IntIterator i = G.neighbors(v);
            while (i.hasNext()) {
                int w = i.next();
                if (dist[w] = = INFINITY) {
                    q.enqueue(w);
                    dist[w] = dist[v] + 1;
                }
            }
        }
    }
}
```
Related Graph Search Problems

Path. Is there a path from s to t?
- Solution: DFS, BFS, or PFS.

Shortest path. Find shortest path (fewest edges) from s to t.
- Solution: BFS.

Bi-connected components. Which nodes participate in cycles?
- Solution: DFS (see textbook).

Euler tour. Is there a cyclic path that uses each edge exactly once?
- Solution: DFS.

Hamilton tour. Is there a cycle that uses each vertex exactly once?
- Solution: ??? (NP-complete).

Bridges of Königsberg

Leonhard Euler, The Seven Bridges of Königsberg, 1736.

"... in Königsberg in Prussia, there is an island A, called the Kneiphof; the river which surrounds it is divided into two branches ... and these branches are crossed by seven bridges. Concerning these bridges, it was asked whether anyone could arrange a route in such a way that he could cross each bridge once and only once....."

Euler tour. Is there a cyclic path that uses each edge exactly once?
- Yes if connected and degrees of all vertices are even.

Euler Tour

How to find an Euler tour (assuming graph is Eulerian).
- Start at some vertex v and repeatedly follow unused edge until you return to v.
 - always possible since all vertices have even degree
- Find additional cyclic paths using remaining edges and splice back into original cyclic path.
- How to efficiently keep track of unused edges?
 - Delete edges after you use them.
- How to efficiently find and splice additional cyclic paths?
 - Push each visited vertex onto a stack.

Euler Tour
Euler Tour: Implementation

```java
private int euler(int v) {
    while (true) {
        IntIterator i = G.neighbors(v);
        if (!i.hasNext()) break;
        stack.push(v);
        G.remove(v, w); // destroys graph
        v = w;
    }
    return v;
}

public void show() {
    stack = new intStack();
    stack.push(0); // found cyclic path from v to itself
    while (euler(v) == v && !stack.isEmpty()) {
        v = stack.pop();
        System.out.println(v);
    }
    if (!stack.isEmpty())
        System.out.println("Not Eulerian");
}
```

assumes graph is connected