Reductions

Linear time reductions
Polynomial time reductions

NP-completeness

Princeton University + COS 226 - Algorithms and Data Structures - Spring 2004 - Kevin Wayne - http://www.Princeton.EDU/~cos226

Reduction

Problem X reduces to problem Y if given a subroutine for Y, can solve X.
. Cost of solving X = cost of solvingY + cost of reduction.
. May call subroutine for Y more than once.

Ex: X = baseball elimination, Y = max flow.

Consequences:
. Establish relative difficulty between two problems. (classify problems)
. Given algorithm for Y, can also solve X. (design algorithms)
. If Xis hard, thenso is Y. (establish intractability)

Linear Time Reductions

Problem X linear reduces to problem Y if X can be solved with:
. Linear number of standard computational steps.

: b
- One C(.]” to subroutine for Y. more generally, if given a O(f(N)) time
. Notation: X< V. subroutine for Y, can solve X in O(f(N)) time

Examples we've already seen in the course.
. Removing duplicates reduces to sorting.
. Voronoi diagram reduces to Delaunay triangulation.
. Arbitrage reduces to negative cycle detection.
. Bipartite matching reduces to max flow.
. Brewer's problem reduces to linear programming.

Other most common type of reduction.
. X polynomial reduces to V.
. Stay tuned for NP-completeness.

Linear Time Reduction: Examples

PRIME: Given (the decimal representation of) an integer x, is x prime?
COMPOSITE: Given an integer x, does x have a nontrivial factor?

1t

other than 1 and x

Claim. COMPOSITE < PRIME.

composite (x)

if (prime(x)) return false;
else return true;

Linear Time Reduction: Examples

PRIME: Given (the decimal representation of) an integer x, is x prime?
COMPOSITE: Given an integer x, does x have a nontrivial factor?

1t

other than 1 and x

Claim. PRIME < COMPOSITE.

if (composite(x)) return false;
else return true;

Linear Time Reduction: Examples

COMPOSITE: Given an integer X, does x have a nontrivial factor?
FACTOR: Given two integers x and y, does x have a nontrivial factor
less than y? T
other than 1 and x

Claim. COMPOSITE < | FACTOR.

. Is 62773913 composite?

. Does 62773913 have a nontrivial factor less than 62773913?

. Yes, 62773912 = 7919 x 7927.

composite (x)

if (factor(x, x)) return true;
else return false;

Problem Equivalence

Tool for classifying problems.

. Equivalence: If X< Yand¥Y < X thenwe write X= V.

- given any algorithm for X, can solve Y in same running time,
and vice versa

. Transitivity: if X< Yand¥Y < Z then X< Z

Equivalence: PRIME <| COMPOSITE and COMPOSITE < PRIME.

Transitivity: PRIME <, COMPOSITE <, FACTOR.

Primality Testing and Factoring
We established: PRIME <| FACTOR.

Natural question: Does FACTOR < PRIME ?
. Consensus opinion = no.

State-of-the-art.
. PRIME isinP.
. FACTOR not believed to be in P.

RSA cryptosystem.
. Based on dichotomy between two problems.
. Touse RSA, must generate large primes efficiently.
. Can break RSA with efficient factoring algorithm.

Reduction Gone Wrong

Caveat.
. System designer specs the interfaces for project.
. One programmer might implement isComposite USing isPrime.
. Another programmer might implement isPrime using isComposite.
. Be careful to avoid infinite reduction loops in practice.

public static boolean isComposite (int x) {
if (isPrime(x)) return false;
else return true;

public static boolean isPrime(int x) {
if (isComposite(x)) return false;
else return true;

Undirected Shortest Path Reduces to Directed Shortest Path

Undirected shortest path (with nonnegative weights) linearly reduces
to directed shortest path.

. Replace each directed arc by two undirected arcs.
. Shortest directed path will use each edge at most once.

10 A
@&—— 5 —43) 12 ® 12\@

9 5
10 5 "
10 15 15 15

4 4

(© 5—;@! 12 ® 12\@

Shortest Path with Negative Costs

Caveat: Reduction invalid in networks with negative cost arcs, even if
no negative cycles.

@—71—@—4+—@

Remark: can still solve shortest path problem in undirected graphs if
no negative cycles, but need more sophisticated techniques.

. Reduce to weighted non-bipartite matching. (!)

Reduction: Min Cut Reduces to Max Flow

Max-flow min-cut theorem says value of max flow = capacity of min cut.

Min cut linear reduces to max flow.

. Given a max flow, find all vertices reachable from source in residual
graph to get min cut.

Does max flow linear reduce to min cut?
. Apparently no easy way to determine max flow from min cut.
. But no better way known to compute a min cut than via max flow.

Network Flow Running Times and Linear Time Reductions

MST undirected shortest path
undirected nonnegative weights
O(m a(m,n)) O(m)

shortest path
nonnegative weights
O(m + n log n)

non-bipartite
matching O(mnY/2)

shortest path

directed MST
O(m + n log n)

min vertex cover bipartite matching
bipartite O(mn'/2) «— O(mn'/2)

min cut max flow no negative cycles
undirected . undirected O(mn) undirected shortest path
O(mn log(m/ n2)) O(mn log(m/ n?)) no negative cycles
l l \ O(mn + n? log n)
: max flow .
min cut max flow bipartite DAG assignment problem

O(mn log(m/ n2)) —> O(mn log(m/ n2)) € O(mn + n? log n)

O(mn log(m/ n?))

X< Y
X — Y

fI weighted non-
min cost flow transportation bipartite matching
O(m? log n + mn log? n) < > o(m? log n + mn log? n) O(mn + n? log n)

Integer Arithmetic

Integer multiplication: given two N-digit integer s and t, compute s x 1.

Integer division: given two integers s and t of at most N digits each,
compute the quotient q = Ls /] and remainder r = s mod t.

Operation Grade School Best Known Lower Bound
Addition O(N) Q(N)
Multiplication O(N?) Q(N)
Division O(N?) Q(N)

Fundamental questions.
. Is multiplication easier than division?
. Is addition easier than multiplication?
. Is division easier than multiplication?

Integer Arithmetic

Integer multiplication: given two N-digit integer s and t, compute s x 1.

Integer division: given two integers s and t of at most N digits each,
compute the quotient q = Ls /] and remainder r = s mod t.

Operation Grade School Best Known Upper Bound
Addition O(N) O(N)
Multiplication O(N?) O(N log N log log N)
Division O(N?) O(N log N log log N)

Theorem. Integer multiplication and integer division have the same
asymptotic complexity.
- Multiplication linear reduces to division.
Division linear reduces to multiplication.

Sorting and Convex Hull

Sorting. Given N distinct integers, rearrange in increasing order.

Convex hull. Given N points in the plane, find their convex hull in
counter-clockwise order.

Lower bounds.

. Recall, under comparison-based model of computation, sorting N
items requires Q(N log N) comparisons.

We show sorting linearly reduces to convex hull.

Hence, finding convex hull of N points requires Q(N log N)
"comparisons" where comparison means ccw.

Sorting Reduces to Convex Hull

Sorting instance (integers):

A = w2
X1, Xy oot Xy f(x) = x

Convex hull instance:

2 2 2
(xq, x0), (X2, x3), ..., (XN, XN)

A

Key observation.
. Region {x : x2 > x} is convex =
all points are on hull. v

. Starting at point with most negative x, counter-clockwise order of
convex hull yields items in sorted order.

3-SUM Reduces to 3-COLLINEAR

3-SUM: Given N distinct integers xq, X,, ... X, are there 3 distinct
integers x;, X;, X, such that x; + x; + x, = 0?

3-COLLINEAR: Given N distinct points (X, y;), (X5, ¥2), - (Xn. YN

are there 3 points that all lie on the same line?
pattern recognition assignment

Conjecture: Any algorithm for 3-SUM requires Q(N?) time.
Claim. 3-SUM < 3-COLLINEAR.

Corollary. Unless you can solve 3-SUM is sub-quadratic time, any
algorithm for 3-COLLINEAR requires Q(N2) time.

Reduction. To determine if there is a solution to 3-SUM instance
Xy, X,, .. Xy, determine if there is a solution to 3-COLLINEAR instance
with (x;, X:3), (X5, X53), ..., (X, X3)-

3-SUM Reduces to 3-COLLINEAR

Claim. If a, b, and c are distinct thena+b +c = 0 if and only if (a, a3),
(b, b3), (c, c3) are collinear.

Proof. Necessary and sufficient conditions for two line segments to be
equal.

a’-b _ b3-c3 - (a-b)(a®+ab+b?) _ (b-c)(b?+bc+c?)
a-b b-c a-b b-c

=S c®+bc-a®-ab=0

=S (c-a)(c+a+b)=0

=S c=a or a+b+c=0

Polynomial-Time Reduction

X polynomial reduces to Y if X can be solved using:
. Polynomial number of standard computational steps.
. Polynomial number of calls to subroutine for VY.
- Notation: X<, V.

Alternate viewpoint. Can solve X in polynomial time given special piece
of hardware that solves instances of VY in a single step.
T

no different from polynomial in this context

Ex: Baseball elimination reduces to max flow.
. Solve N max flow problems on a graph with N? vertices.

Remark 1: If X< Y then X<, V.
Remark 2: If X can be solved in polynomial time, then X <, Y for any V.

Polynomial-Time Reduction

Goal: classify and separate problems according to relative difficulty.
. Those that can be solved in polynomial time.
« Those that (probably) require exponential fime.

Establish tractability. If X <, Y and Y can be solved in polynomial-
time, then X can be solved in polynomial time.

Establish intractability. If X <, Y and X cannot be solved in
polynomial-time, then ¥ cannot be solved in polynomial time.

Hamilton Path

HAMILTON-PATH. Given an undirected graph, is there a path that
visits every vertex exactly once?

EULER-PATH. Given an undirected graph, is there a path that visits
every edge exactly once?

Hamilton Path Reduces to Shortest Path

HAMILTON-PATH. Given an undirected graph, is there a path that
visits every vertex exactly once?

SHORTEST-PATH. Given an directed network and two vertices s and
t, find the shortest simple path from s to t.

Claim. HAMILTON-PATH <, SHORTEST-PATH.
. For each undirected edge, make two directed edges of weight -1.
. For all pairs of vertices v and w, find shortest path from v to w.
. If shortest path has length -(V-1) then this is a Hamilton path.

Hamilton Path Reduces to Shortest Path

Claim. HAMILTON-PATH <, SHORTEST-PATH.
Conjecture. No polynomial algorithm exists for HAMILTON-PATH.
Corollary. Polynomial algorithm for SHORTEST-PATH is unlikely.

. This explains why we needed the "no negative cycles" assumption for
shortest path algorithms.

Shortest Path Algorithm Running Time

Dijkstra E log V
Bellman-Ford EV
Brute force 2V

Subset Sum Reduces To Integer Programming

SUBSET-SUM. Given N integers a,, a;, ... a5, and another integer b, is
there a subset of integers that sums to exactly b?

Integer programming. Given integers b;, a;; find 0/1 variables x; that
satisfy a linear system of equations.

N
_1a,jxj = b; 1<isMm

Xj € 0.1} 1<j<N

J

SUBSET-SUM polynomial reduces to IP. Solve integer program below
and select subset of indices with x; = 1.

Polynomial-Time Reductions

hard unless P = NP == CNF-SAT

3-CNF-SAT CLIQUE

i i

/\ bick Kar‘p

/\ /\j(XSpy y

3-COLOR DIR-HAM-CYCLE IND-SET VERTEX-COVER
PLANAR-3- HAM-CYCLE SET-COVER SUBSET-SUM
con.on‘/l A/l
HAM-PATH TSP PARTITION INTEGER
* PROGRAMMING
SHORTEST-PATH SCHEDULE KNAPSACK

NP-Completeness

P. Set of all decision problems solvable in polynomial time on a
deterministic Turing machine.

NP. Set of all decision problems solvable in polynomial time on a
nondeterministic Turing machine.

NP-complete. Decision problem X is NP-complete if every problem in
NP polynomial reduces to X.

Cook's theorem. CNF-SAT is NP-complete.
Corollary. If P = NP, then no polynomial algorithm for CNF-SAT.

Practical consequence. If P = NP, then can't hope to design polynomial
algorithm for any problem on the previous slide.

Polynomial-Time Reductions

CNF-SAT

3-CNF-SAT

3-COLOR DIRFHAM-CYCL VERTEX-COVER
PLANAR-3- HAM-CYCLE SUBSET-SUM
COLOR

TSP INTEGER

PROGRAMMING

SHORTEST-PATH SCHEDULE

KNAPSACK

Summary

Reductions are important in theory to:

. Classify problems according to their computational requirements.
. Establish intractability.

. Establish tractability.

Reductions are important in practice to:
. Design algorithms.
. Design reusable software modules.

- sorting, priority queue, symbol table, graph, shortest path,
max flow, regular expressions, linear programming

. Determine difficulty of your problem and choose the right tool.
- use exact algorithm for tractable problems
- use heuristics for NP-hard problems (e.g., bin packing)

