
Princeton University • COS 226 • Algorithms and Data Structures • Spring 2004 • Kevin Wayne • http://www.Princeton.EDU/~cos226

Reductions

Linear time reductions

Polynomial time reductions

NP-completeness

2

Reduction

Problem X reduces to problem Y if given a subroutine for Y, can solve X.
� Cost of solving X = cost of solving Y + cost of reduction.
� May call subroutine for Y more than once.

Ex: X = baseball elimination, Y = max flow.

Consequences:
� Establish relative difficulty between two problems. (classify problems)
� Given algorithm for Y, can also solve X. (design algorithms)
� If X is hard, then so is Y. (establish intractability)

3

Linear Time Reductions

Problem X linear reduces to problem Y if X can be solved with:
� Linear number of standard computational steps.
� One call to subroutine for Y.
� Notation: X � L Y.

Examples we've already seen in the course.
� Removing duplicates reduces to sorting.
� Voronoi diagram reduces to Delaunay triangulation.
� Arbitrage reduces to negative cycle detection.
� Bipartite matching reduces to max flow.
� Brewer's problem reduces to linear programming.

Other most common type of reduction.
� X polynomial reduces to Y.
� Stay tuned for NP-completeness.

more generally, if given a O(f(N)) time
subroutine for Y, can solve X in O(f(N)) time

4

Linear Time Reduction: Examples

PRIME: Given (the decimal representation of) an integer x, is x prime?
COMPOSITE: Given an integer x, does x have a nontrivial factor?
FACTOR: Given two integers x and y, does x have a nontrivial factor
less than y?

Claim. COMPOSITE � L PRIME.

if (prime(x)) return false;
else return true;

composite (x)

other than 1 and x

5

if (composite(x)) return false;
else return true;

prime (x)

Linear Time Reduction: Examples

PRIME: Given (the decimal representation of) an integer x, is x prime?
COMPOSITE: Given an integer x, does x have a nontrivial factor?
FACTOR: Given two integers x and y, does x have a nontrivial factor
less than y?

Claim. PRIME � L COMPOSITE.

other than 1 and x

6

Linear Time Reduction: Examples

PRIME: Given (the decimal representation of) an integer x, is x prime?
COMPOSITE: Given an integer x, does x have a nontrivial factor?
FACTOR: Given two integers x and y, does x have a nontrivial factor
less than y?

Claim. COMPOSITE � L FACTOR.
� Is 62773913 composite?
� Does 62773913 have a nontrivial factor less than 62773913?
� Yes, 62773912 = 7919 � 7927.

if (factor(x, x)) return true;
else return false;

composite (x)

other than 1 and x

7

Problem Equivalence

Tool for classifying problems.
� Equivalence: If X � L Y and Y � L X then we write X � L Y.

– given any algorithm for X, can solve Y in same running time,
and vice versa

� Transitivity: if X � L Y and Y � L Z then X � L Z.

Equivalence: PRIME � L COMPOSITE and COMPOSITE � L PRIME.

Transitivity: PRIME � L COMPOSITE � L FACTOR.

8

Primality Testing and Factoring

We established: PRIME � L FACTOR.

Natural question: Does FACTOR � L PRIME ?
� Consensus opinion = no.

State-of-the-art.
� PRIME is in P.
� FACTOR not believed to be in P.

RSA cryptosystem.
� Based on dichotomy between two problems.
� To use RSA, must generate large primes efficiently.
� Can break RSA with efficient factoring algorithm.

9

Reduction Gone Wrong

Caveat.
� System designer specs the interfaces for project.
� One programmer might implement isComposite using isPrime.
� Another programmer might implement isPrime using isComposite.
� Be careful to avoid infinite reduction loops in practice.

public static boolean isComposite(int x) {
if (isPrime(x)) return false;
else return true;

}

public static boolean isPrime(int x) {
if (isComposite(x)) return false;
else return true;

}

10

Undirected Shortest Path Reduces to Directed Shortest Path

Undirected shortest path (with nonnegative weights) linearly reduces
to directed shortest path.

� Replace each directed arc by two undirected arcs.
� Shortest directed path will use each edge at most once.

s

2

3

5

6 t5

10

12

15

9

12

10154

s

2

3

5

6 t5

10

12

15

9

12

10

9

10

4

15

12 12

10
15154

11

Shortest Path with Negative Costs

Caveat: Reduction invalid in networks with negative cost arcs, even if
no negative cycles.

Remark: can still solve shortest path problem in undirected graphs if
no negative cycles, but need more sophisticated techniques.

� Reduce to weighted non-bipartite matching. (!)

tvs 7 -4

tvs 7 -4
7 -4

12

Reduction: Min Cut Reduces to Max Flow

Max-flow min-cut theorem says value of max flow = capacity of min cut.

Min cut linear reduces to max flow.
� Given a max flow, find all vertices reachable from source in residual

graph to get min cut.

Does max flow linear reduce to min cut?
� Apparently no easy way to determine max flow from min cut.
� But no better way known to compute a min cut than via max flow.

13

Network Flow Running Times and Linear Time Reductions

undirected shortest path
nonnegative weights

O(m)

shortest path
nonnegative weights

O(m + n log n)

undirected shortest path
no negative cycles
O(mn + n2 log n)

shortest path
no negative cycles

O(mn)

assignment problem
O(mn + n2 log n)

weighted non-
bipartite matching

O(mn + n2 log n)

directed MST
O(m + n log n)

MST
undirected
O(m �(m,n))

non-bipartite
matching O(mn1/2)

bipartite matching
O(mn1/2)

max flow
bipartite DAG

O(mn log(m/ n2))
max flow

O(mn log(m/ n2))
min cut

O(mn log(m/ n2))

max flow
undirected

O(mn log(m/ n2))

min cut
undirected

O(mn log(m/ n2))

min cost flow
O(m2 log n + mn log2 n)

transportation
O(m2 log n + mn log2 n)

min vertex cover
bipartite O(mn1/2)

X � L Y
X Y

14

Integer Arithmetic

Integer multiplication: given two N-digit integer s and t, compute s � t.

Integer division: given two integers s and t of at most N digits each,
compute the quotient q = �s / t� and remainder r = s mod t.

Fundamental questions.
� Is multiplication easier than division?
� Is addition easier than multiplication?
� Is division easier than multiplication?

Addition

Operation

O(N)

Grade School

�(N)

Best Known Lower Bound

Multiplication O(N2) �(N)

Division O(N2) �(N)

15

Integer Arithmetic

Integer multiplication: given two N-digit integer s and t, compute s � t.

Integer division: given two integers s and t of at most N digits each,
compute the quotient q = �s / t� and remainder r = s mod t.

Theorem. Integer multiplication and integer division have the same
asymptotic complexity.

� Multiplication linear reduces to division.
� Division linear reduces to multiplication.

Addition

Operation

O(N)

Grade School

O(N)

Best Known Upper Bound

Multiplication O(N2) O(N log N log log N)

Division O(N2) O(N log N log log N)

17

Sorting and Convex Hull

Sorting. Given N distinct integers, rearrange in increasing order.

Convex hull. Given N points in the plane, find their convex hull in
counter-clockwise order.

Lower bounds.
� Recall, under comparison-based model of computation, sorting N

items requires �(N log N) comparisons.
� We show sorting linearly reduces to convex hull.
� Hence, finding convex hull of N points requires �(N log N)

"comparisons" where comparison means ccw.

18

Sorting Reduces to Convex Hull

Sorting instance (integers):

Convex hull instance:

Key observation.
� Region {x : x2 � x} is convex �

all points are on hull.
� Starting at point with most negative x, counter-clockwise order of

convex hull yields items in sorted order.

),(,),,(),,(22
22

2
11 NN xxxxxx �

Nxxx ,,, 21 �

f(x) = x2

)2,(ixix

)2,(jxjx

19

3-SUM Reduces to 3-COLLINEAR

3-SUM: Given N distinct integers x1, x2, … xN , are there 3 distinct
integers xi, xj, xk such that xi + xj + xk = 0 ?

3-COLLINEAR: Given N distinct points (x1, y1), (x2, y2), … (xN, yN),
are there 3 points that all lie on the same line?

Conjecture: Any algorithm for 3-SUM requires �(N2) time.
Claim. 3-SUM � L 3-COLLINEAR.
Corollary. Unless you can solve 3-SUM is sub-quadratic time, any
algorithm for 3-COLLINEAR requires �(N2) time.

Reduction. To determine if there is a solution to 3-SUM instance
x1, x2, … xN, determine if there is a solution to 3-COLLINEAR instance
with (x1, x1

3), (x2, x2
3), …, (xN, xN

3).

pattern recognition assignment

20

3-SUM Reduces to 3-COLLINEAR

Claim. If a, b, and c are distinct then a + b + c = 0 if and only if (a, a3),
(b, b3), (c, c3) are collinear.

Proof. Necessary and sufficient conditions for two line segments to be
equal.

0or
0)()(
022

)()()()(22223333

�����

�����

�����

���
�

���

�

���

�

�

�

�

cbaac
bacac
ababcc

cb
cbcbcb

ba
bababa

cb
cb

ba
ba

y = x3

21

Polynomial-Time Reduction

X polynomial reduces to Y if X can be solved using:
� Polynomial number of standard computational steps.
� Polynomial number of calls to subroutine for Y.
� Notation: X � P Y.

Alternate viewpoint. Can solve X in polynomial time given special piece
of hardware that solves instances of Y in a single step.

Ex: Baseball elimination reduces to max flow.
� Solve N max flow problems on a graph with N2 vertices.

Remark 1: If X � L Y then X � P Y.
Remark 2: If X can be solved in polynomial time, then X � P Y for any Y.

no different from polynomial in this context

22

Polynomial-Time Reduction

Goal: classify and separate problems according to relative difficulty.
� Those that can be solved in polynomial time.
� Those that (probably) require exponential time.

Establish tractability. If X � P Y and Y can be solved in polynomial-
time, then X can be solved in polynomial time.

Establish intractability. If X � P Y and X cannot be solved in
polynomial-time, then Y cannot be solved in polynomial time.

23

Hamilton Path

HAMILTON-PATH. Given an undirected graph, is there a path that
visits every vertex exactly once?

EULER-PATH. Given an undirected graph, is there a path that visits
every edge exactly once?

24

Hamilton Path Reduces to Shortest Path

HAMILTON-PATH. Given an undirected graph, is there a path that
visits every vertex exactly once?

SHORTEST-PATH. Given an directed network and two vertices s and
t, find the shortest simple path from s to t.

Claim. HAMILTON-PATH � P SHORTEST-PATH.
� For each undirected edge, make two directed edges of weight –1.
� For all pairs of vertices v and w, find shortest path from v to w.
� If shortest path has length –(V-1) then this is a Hamilton path.

s

2

3

5

6 s

2

3

5

6-1

-1

-1

-1

-1

-1

-1

-1

-1-1-1

-1

25

Hamilton Path Reduces to Shortest Path

Claim. HAMILTON-PATH � P SHORTEST-PATH.

Conjecture. No polynomial algorithm exists for HAMILTON-PATH.

Corollary. Polynomial algorithm for SHORTEST-PATH is unlikely.
� This explains why we needed the "no negative cycles" assumption for

shortest path algorithms.

Nonnegative weights

Shortest Path

Dijkstra

Algorithm

E log V

Running Time

No negative cycles Bellman-Ford E V

Arbitrary weights Brute force 2V

26

Subset Sum Reduces To Integer Programming

SUBSET-SUM. Given N integers a1, a2, … aN , and another integer b, is
there a subset of integers that sums to exactly b?

Integer programming. Given integers bi, aij find 0/1 variables xi that
satisfy a linear system of equations.

SUBSET-SUM polynomial reduces to IP. Solve integer program below
and select subset of indices with xi = 1.

Njx

bxa

j

N

j
jj

���

��
�

1}1,0{
1

Njx

Mibxa

j

i
N

j
jij

���

����
�

1}1,0{

1
1

27

Polynomial-Time Reductions

CNF-SAT

3-CNF-SAT

3-COLOR DIR-HAM-CYCLE

HAM-CYCLE

IND-SET

CLIQUE

SUBSET-SUM

VERTEX-COVER

TSP

SET-COVER

PARTITION INTEGER
PROGRAMMING

KNAPSACK

Dick Karp

PLANAR-3-
COLOR

SCHEDULE

hard unless P = NP

X � P YX Y

HAM-PATH

SHORTEST-PATH

28

NP-Completeness

P. Set of all decision problems solvable in polynomial time on a
deterministic Turing machine.

NP. Set of all decision problems solvable in polynomial time on a
nondeterministic Turing machine.

NP-complete. Decision problem X is NP-complete if every problem in
NP polynomial reduces to X.

Cook's theorem. CNF-SAT is NP-complete.

Corollary. If P � NP, then no polynomial algorithm for CNF-SAT.

Practical consequence. If P � NP, then can't hope to design polynomial
algorithm for any problem on the previous slide.

29

Polynomial-Time Reductions

CNF-SAT

3-CNF-SAT

3-COLOR DIR-HAM-CYCLE

HAM-CYCLE

IND-SET

CLIQUE

SUBSET-SUM

VERTEX-COVER

TSP

SET-COVER

PARTITION INTEGER
PROGRAMMING

KNAPSACK

PLANAR-3-
COLOR

SCHEDULE

HAM-PATH

SHORTEST-PATH

33

Summary

Reductions are important in theory to:
� Classify problems according to their computational requirements.
� Establish intractability.
� Establish tractability.

Reductions are important in practice to:
� Design algorithms.
� Design reusable software modules.

– sorting, priority queue, symbol table, graph, shortest path,
max flow, regular expressions, linear programming

� Determine difficulty of your problem and choose the right tool.
– use exact algorithm for tractable problems
– use heuristics for NP-hard problems (e.g., bin packing)

