
Princeton University • COS 226 • Algorithms and Data Structures • Spring 2004 • Kevin Wayne • http://www.Princeton.EDU/~cos226

Hashing

Reference: Chapter 14, Algorithms in Java, 3rd Edition, Robert Sedgewick.

Hash functions

Separate chaining

Linear probing

Double hashing

2

Optimize Judiciously

Reference: Effective Java by Joshua Bloch.

"More computing sins are committed in the name of efficiency (without
necessarily achieving it) than for any other single reason - including
blind stupidity." - William A. Wulf

"We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil." - Donald E. Knuth

"We follow two rules in the matter of optimization:
Rule 1: Don't do it.
Rule 2 (for experts only). Don't do it yet - that is, not until you have
a perfectly clear and unoptimized solution."

- M. A. Jackson

3

Hashing: Basic Plan.

Save items in a key-indexed table. Index is a function of the key.

Hash function. Method for computing table index from key.

Collision resolution strategy. Algorithm and data structure to handle
two keys that hash to the same index.

Classic space-time tradeoff.
� No space limitation: trivial hash function with key as address.
� No time limitation: trivial collision resolution = sequential search.
� Limitations on both time and space: hashing (the real world)

4

Choosing a Good Hash Function

Goal: scramble the keys.
� Each table position equally likely for each key.

Ex: Social Security numbers.
� Bad: first three digits.
� Better: last three digits.

Ex: date of birth.
� Bad: first three digits of birth year.
� Better: birthday.

Ex: phone numbers.
� Bad: first three digits.
� Better: last three digits.

573 = California, 574 = Alaska

assigned in chronological order within
a given geographic region

thoroughly researched problem

198 for all of you

less collisions even with only
366 possible values

5

Hash Function: String Keys

Strings hash functions.
� Java 1.1: calculation involving only 16 characters.
� Java 1.2: calculation involving all characters.

� Equivalent to h = 31N-1s0 + . . . + 312s2 + 31s1 + sN-1.
� Can we use h % M as index for table of size M?

Work to hash a string of length W.
� W add, W multiply, 1 mod.
� Note: reference Java implementation caches String hash codes.

public int hashCode() {
int hash = 0;
for (int i = 0; i < length(); i++)

hash = (31 * hash) + charAt(i);
return hash;

} String.java

s = "call";
h = s.hashCode();
hash = h % M;

3045982
7121 8191

Horner's method

6

Collisions

Collision = two keys hashing to same value.
� Essentially unavoidable.
� Birthday problem: how many people will have to enter a room until

two have the same birthday? 23
� With M hash values, expect a collision after sqrt(� M/2) insertions.

Conclusion: can't avoid collisions unless
you have a ridiculous amount of memory.

Challenge: efficiently cope with collisions.

7

Collision Resolution.

Two main approaches.

Separate chaining.
� M much smaller than N.
� ~N / M keys per table position.
� Put keys that collide in a list.
� Need to search lists.

Open addressing.
� M much larger than N.
� plenty of empty table slots.
� When a new key collides, find next

empty slot and put it there.
� Complex collision patterns.

jocularly seriously

listen

browsing

st[0]

st[1]

st[2]

st[8190]

suburban untravelledst[3] considerating

null

M = 8191, N = 15000

listen

browsing

st[2]

st[3]

st[4]

st[8190]

suburban

st[5]

null

jocularly

seriously

st[0]

st[1]

null

M = 30001, N = 15000
8

Separate Chaining

Separate chaining: array of M linked lists.
� Hash: map key to integer i between 0 and M-1.
� Insert: put at front of ith chain.
� Search: only need to search ith chain.

jocularly seriously

listen

browsing

st[0]

st[1]

st[2]

st[8190]

3untravelled
3suburban

5017ishmael
0seriously

.. . .

3480
7121

hash

me
call
key

suburban untravelledst[3] considerating

null

M = 8191

constant time

proportional to length of chain

9

Symbol Table: Hash Table Implementation

public class SymbolTable {
private int M = 8191;
private List[] st = new List[M];
private class List { AS BEFORE }
public static int hash(String s, int M) {

return (s.hashCode() & 0x7fffffff) % M;
}
void put(String k, Object val) {

int i = hash(k, M);
st[i] = new List(k, val, st[i]);

}
Object get(String k) {

int i = hash(k, M);
for (List x = st[i]; x != null; x = x.next)

if (k.equals(x.key)) return x.value;
return null;

}
}

number of chains (8191 is prime)

insert at front of ith chain

exhaustively search ith chain for key

between 0 and M-1hex

10

Hash Table Implementation: Performance

Advantages: fast insertion, fast search.
Disadvantage: hash table has fixed size.

Hash tables improves ALL symbol table clients.
� Makes difference between practical solution and no solution.
� Ex: Moby Dick now takes a few seconds instead of hours.

% java DeDup < mobydick.txt
moby
dick
herman
melville
call
me
ishmael
some
years
ago
. . .

210,028 words
16,834 distinct

corrected by doubling the size of the array
and rehashing all of the key-value pairs

11

Separate Chaining Performance

Separate chaining performance.
� Search cost is proportional to length of chain.
� Trivial: average length = N / M.
� Worst case: all keys hash to same chain.

Theorem. Let � = N / M > 1 be average length of list. For any t > 1,
probability that list length > t � is exponentially small in t.

Parameters.
� M too large � too many empty chains.
� M too small � chains too long.
� Typical choice: � = N / M ~ 10 � constant-time search/insert.

depends on hash map
being random map

12

Symbol Table: Implementations Cost Summary

Sorted array

Implementation

Unsorted list

log N

Search

N

N

Insert

1

log N

Search

N / 2

N / 2

Insert

1

N / 2

Delete

1

Worst Case Average Case

N

Delete

1

Hashing N 1 1* 1* 1*N

* assumes hash function is random

13

Linear Probing

Linear probing: array of size M.
� Hash: map key to integer i between 0 and M-1.
� Insert: put in slot i if free, if not try i+1, i+2, etc.
� Search: search slot i, if occupied but no match, try i+1, i+2, etc.

Cluster.
� Contiguous block of items.
� Search through cluster using elementary algorithm for arrays.

typically twice as many slots as elements

14

Linear Probing Performance

Linear probing performance.
� Insert and search cost depend on length of cluster.
� Trivial: average length of cluster = � = N / M.
� Worst case: all keys hash to same cluster.

Theorem (Knuth, 1962). Let � = N / M < 1 be average length of list.

Parameters.
� M too large � too many empty array entries.
� M too small � clusters coalesce.
� Typical choice: M ~ 2N � constant-time search/insert.

depends on hash map
being random map

but elements more likely to
hash to big clusters

15

Double Hashing

Double hashing: avoid clustering by using second hash to compute skip
for search.

Hash: map key to integer i between 0 and M-1.
Second hash: map key to nonzero skip value.

Ex: 1 + (k mod 97).

Avoids clustering.
� Skip values give different search paths for keys that collide.

best if relatively prime to M

16

Double Hashing Performance

Linear probing performance.
� Insert and search cost depend on length of cluster.
� Trivial: average length of cluster = � = N / M.
� Worst case: all keys hash to same cluster.

Theorem. Let � = N / M < 1 be average length of list.

Parameters.
� M too large � too many empty array entries.
� M too small � clusters coalesce.
� Typical choice: M ~ 2N � constant-time search/insert.

Disadvantage: delete cumbersome to implement.

depends on hash map
being random map

17

Hashing Tradeoffs

Separate chaining vs. linear probing/double hashing.
� Space for links vs. empty table slots.
� Small table + linked allocation vs. big coherent array.

Linear probing vs. double hashing.

load factor �

50% 66% 75% 90%

linear
probing

search 1.5 2.0 3.0 5.5

insert 2.5 5.0 8.5 55.5

double
hashing

search 1.4 1.6 1.8 2.6

insert 1.5 2.0 3.0 5.5

18

Symbol Table: Java Libraries

Java has built-in libraries for symbol tables.
� HashMap = linear probing hash table implementation.

Duplicate policy.
� Java HashMap forbids two elements with the same key.
� Sedgewick implementations allow duplicate keys.

import java.util.HashMap;
public class HashMapDemo {

public static void main(String[] args) {
HashMap st = new HashMap();
st.put("www.cs.princeton.edu", "128.112.136.11");
st.put("www.princeton.edu", "128.112.128.15");
st.put("www.simpsons.com", "209.052.165.60");
System.out.println(st.get("www.cs.princeton.edu"));

}
}

19

Implementing a HashMap Key

Java HashMap allows arbitrary objects as the key.
� Uses the equals and hashCode methods of the key object.
� Consistency: equal objects must have equal hash codes.
� Immutability: once you insert a key, don't change it a way that

would change its hashCode or equals.
– immutable in Java: String, Integer, BigInteger
– mutable in Java: Date

"Note: great care must be exercised if mutable objects
are used as map keys. The behavior of a map is not
specified if the value of an object is changed in a manner
that affects equals comparisons while the object is a key
in the map. A special case of this prohibition is that it is
not permissible for a map to contain itself as a key. "

Javadoc for Map interface

20

Implementing a HashMap Key

Phone numbers: (609) 867-5309.

area code exchange extension

public class PhoneNumber {
private int area; // area code (3 digits)
private int exch; // exchange (3 digits)
private int ext; // extension (4 digits)

// constructor, toString, but no mutators

public boolean equals(Object x) {
PhoneNumber a = this;
PhoneNumber b = (PhoneNumber) x;
return (a.area == b.area) &&

(a.exch == b.exch) && (a.ext == b.ext);
}
public int hashCode() {

return 10007 * (area + 1009 * exch) + ext;
}

}

21

Frequency Symbol Table

Frequency symbol table.
� fst.hit(key) increment frequency count of given key.
� fst.freq(key) returns number of times given key occurs.

Applications.
� Web traffic analyzer: look up host to find number of hits.
� Browser: highlight visited links in purple.
� Chess: detect a repetition draw.
� Bayesian spam filter.

Implementation. Simple extension of a symbol table.

FrequencyTable fst = new FrequencyTable();
while (!StdIn.isEmpty() {

String key = StdIn.readString();
fst.hit(key);
System.out.println(fst.freq(key));

}
22

Frequency Symbol Table

public class FrequencyTable {
HashMap st = new HashMap();
private class Entry {

String name;
int freq;

}
public void hit(String key) {

Entry entry = (Entry) st.get(key);
if (entry == null) {

entry = new Entry();
entry.name = key;
st.put(key, entry);

}
entry.freq++;

}
public int freq(String key) {

Entry entry = (Entry) st.get(key);
if (entry == null) return 0;
else return entry.freq;

}
}

helper data type

create new entry if
first occurrence of key

increment counter

return frequency

23

A Plan for Spam

Bayesian spam filter.
� Filter based on analysis of previous messages.
� User trains the filter by classifying messages as spam or ham.
� Parse messages into tokens (alphanumeric, dashes, ', $)

Build data structures.
� Hash table A of tokens and frequencies for spam.
� Hash table B of tokens and frequencies for ham.
� Hash table C of tokens with probability p that they appear in spam.

Reference: http://www.paulgraham.com/spam.html

double h = 2.0 * ham.freq(word);
double s = 1.0 * spam.freq(word);
double p = (s/spams) / (h/hams + s/spams);

bias probabilities to
avoid false positives

24

A Plan for Spam

Identify incoming email as spam or ham.
� Find 15 most interesting tokens (difference from 0.5).
� Combine probabilities using Bayes law.

� Declare as spam if threshold > 0.9.

Details.
� Words you've never seen.
� Words that appear in ham corpus but not spam corpus, vice versa.
� Words that appear less than 5 times in spam and ham corpuses.
� Update data structures.

which data structure?

))1()1()1(()(15211521

1521

pppppp
ppp

����������

���

��

�

25

Algorithmic Complexity Attacks

Is the random hash map assumption important in practice?
� Yes, in obvious situations – aircraft control, nuclear reactors.
� Yes, sometimes in surprising situations.

Hashing-based denial-of-service attacks.
� If malicious adversary can choose what strings to

insert into your hash table, you might be in big trouble.

Crosby-Wallach exploits of real systems.
� Bro server: send carefully chosen packets to DOS the server, using

less bandwidth than a dial-up modem
� Perl 5.8.0: insert carefully chosen strings into associative array.
� Linux 2.4.20 kernel: save files with carefully chosen names.

Reference: http://www.cs.rice.edu/~scrosby/hash/
26

Algorithmic Complexity Attacks

How easy is it to break Java's hashCode with String keys?
� Almost trivial: String hash function is part of language spec.
� Java's string hashCode: hash of "BB" = hash of "Aa" = 2112.
� Can now create 2N strings of length 2N that all hash to same value!

Possible to fix?
� Security by obscurity.
� Cryptographically secure hash functions.
� Universal hashing.

AaAaAaAa
AaAaAaBB
AaAaBBAa
AaAaBBBB
AaBBAaAa
AaBBAaBB
AaBBBBAa
AaBBBBBB

BBAaAaAa
BBAaAaBB
BBAaBBAa
BBAaBBBB
BBBBAaAa
BBBBAaBB
BBBBBBAa
BBBBBBBB

