Directed Graphs

Depth first search
Transitive closure
Topological sort
PERT/CPM

Reference: Chapter 19, Algorithms in Java, 3rd Edition, Robert Sedgewick.

Princeton University + COS 226 - Algorithms and Data Structures - Spring 2004 - Kevin Wayne - http://www.Princeton.EDU/~cos226

Directed Graphs

Digraph. Directed graph.

. Edge from v to w.

» One-way street.

. Hyperlink from Yahoo to Princeton.

Graph Applications

Vertices Edges

telephones, computers fiber optic cables

gates, registers, processors | wires

joints rods, beams, springs

reservoirs, pumping stations | pipelines

stocks, currency transactions

street intersections, airports | highways, airway routes

tasks precedence constraints

functions function calls

web pages hyperlinks

board positions legal moves

people, actors friendships, movie casts

neurons synapses

proteins protein-protein interactions

molecules bonds

A Few Directed Graph Problems

Transitive closure. Is there a directed path from v to w?

Topological sort. Can you draw the graph so that all of the edges point
from left to right?

PERT/CPM. Given a set of tasks with precedence constraints, what is the
earliest we can complete each task?

Pagerank. What is the importance of a web page?
Strong connectivity. Are all vertices mutually reachable?

Shortest path. Given a weighted graph, find best route from v to w?

Digraph ADT in Java

Typical client program.
. Create a Digraph.

. Pass the pigraph o a graph processing routine, e.g., DFsearcher.
- Query the graph processing routine for information.

calculate number of strongly connected components

Directed Graph Representation
Vertex names. ABCDEFGHIJKLM
. This lecture: use integers between 0 and v-1.

. Real world: convert between names and integers with symbol table.

Orientation of edge matters.

Po4s

Set of edges representation.
« AABA-GA-CL-MJ-M J-L J-KE-DF-DH-IF-E A-F G-E

Adjacency Matrix Representation

Adjacency matrix representation.
. Two-dimensional v x v boolean array.
. Edge v-w in graph: adj(v][w] = true.

) 4

oo b

adjacency matrix

Adjacency Matrix: Java Implementation

Same as for undirected graphs, but only insert one copy of each edge.

Adjacency List Representation

Vertex indexed array of lists.
. Space proportional o number of edges.
. One representations of each directed edge.

ETCAYHEITOTMO O ®>

adjacency list

Adjacency List: Java Implementation

Same as for undirected graphs, but only insert one copy of each edge.

Depth First Search

Transitive closure. Is there a directed path from v to w?

Use DFS to calculate all nodes reachable from v.

Enables direct solution of simple graph problems.
. Transitive closure.
. Directed cycles.
. Topological sort.

Basis for solving difficult graph problems.
. Strong connected components.
. Directed Euler path.

Transitive Closure: Java Implementation

Transitive Closure: Cost Summary

Transitive closure. Is there a directed path from v to w?

Method Preprocess Query Space
= | DFS (preprocess) EV 1 V2
DFS (online) 1 E+V E

Open research problem. O(1) query, O(V?) preprocessing time.

Application: Scheduling

Given a set of tasks to be completed with precedence constraints, in
what order should we schedule the tasks?

. Task O: read programming assignment.
. Task 1: download files.
. Task 2: write code.

. Task 12: sleep.

Graph model.
. Create a vertex v for each task.
. Create an edge v-w if task v must precede task w.

Directed Acyclic Graph

DAG: directed acyclic graph.

=

0123 456 7 8 9101112

ts|0 1 2 3 8 7 6 4 5 9101112

Topological Sort with DFS: Java Implementation
Topologically sort a DAG. What if input graph is not a DAG?

public class TopologicalSorter {
public TopologicalSorter (Digraph G) {

this.cnt = G.V() ;
for (int v = 0; v < G.V(); v++)
if ('visited[v]) dfs(v);
}

private void dfs(int v) {
visited[v] = true;
IntIterator i = G.neighbors(v) ;
while (i.hasNext()) {
int w = i.next();
if (!'visited[w]) dfs(w);
}
ts[--cnt] = v; 4@ assign numbers in
} reverse DFS postorder

Application: PERT/CPM

Program Evaluation and Review Technique / Critical Path Method.
. Task v requires time[v] units of processing time.
. Can work on jobs in parallel subject to precedence constraints:
- must finish task v before beginning w
What's the earliest we can complete each task?

Index Task Duration Prereq °

A Begin 0 =

B Framing 4 A

G Roofing 2 B

D Siding 6 B 3
E Windows 3 D

F Plumbing 3 D

G Electricity 4 CE

H Paint 6 C,E

I Finish 0 F.H

Longest Path in DAG

Longest path algorithm in DAG. E
. Compute topological order of vertices.

. Initialize fin[v] = 0 for all vertices v.
. Consider vertices v in topological order:

- for each edge v-w, set
fin[w] = max(fin[w], fin[v] + time[w])

In general graphs, longest path problem is NP-hard.

Application: Web Crawler

Goal. Crawl Internet and visit every page.
Solution. BFS with implicit graph.

Vertices are websites instead of integers.
Use string to represent vertex.
. Use symbol table visited to mark website already visited.

Directed edges from website v are URLs that appear in page v.
Use regular expression to find patterns like http://xxx.yyy.zzz.
Add newly discovered webpages o Queue of strings.

Web Crawler: Java Implementation

Queue q = new Queue () ; // queue of sites to crawl
HashSet visited = new HashSet(); // ST of visited websites
gq.enqueue (s) ; // start crawl from site s
visited.add(s) ;
while ('q.isEmpty()) {
String v = (String) gq.dequeue() ;
System.out.println(v) ;
In in = new In(v);
String input = in.readAll() ;
String regexp = "http:// (\\w+\\.)* (\\w+)";
Pattern pattern = Pattern.compile (regexp) ;
Matcher matcher = pattern.matcher (input) ;
while (matcher.find()) {
String w = matcher.group(); € search usingregular expression
if (!'visited.contains(w)) {

visited.add (w) ;
q.enqueue (W) ; if unvisited, mark as visited
} and put on queue

w readinraw himl
@ httpi//xxxyyy.zzz

Application: Google's PageRank Algorithm

Goal. Determine which web pages on Internet are important.
Solution. Ignore keywords and content, focus on hyperlink structure.

Random surfer model.
. Start at random page.

. With probability 0.85, randomly select a hyperlink to visit next;
with probability 0.15, randomly select any page.

. Never hit "Back" button.

. PageRank = proportion of time random surfer spends on each page.

Intuition.

. Each page evenly distributes its rank to all pages that it points to.
. Each page receives rank from all pages that point to it.
. "Hard" o cheat.

Application: Google's PageRank Algorithm
Solution 1: Simulate random surfer for a long time.
Solution 2: Compute ranks directly until they converge.

for (i = 0; i
for (int
for (int v

PHASES; i++) {
0; v < G.V(); v++) oldrank[v] = rank|[v];
0; v < G.V(); v++) rank[v] = 0;

4 K
nnA

for (int v = 0; v < G.V(); v++) {
IntIterator i = G.neighbors(v);
while (i.hasNext()) {
int w = i.next()
rank[w] += 1.0 * oldrank[v] / outdegree[v];

Solution 3: Compute eigenvalues of adjacency matrix!

PageRank Caveats

Dead end: page with no outgoing links.
. All importance will leak out of web.
. Easy to detect and ignore.

Spider frap: group of pages with no links leaving the group.
. Group will accumulate all importance of Web.
. Compute strongly connected components.
- use transitive closure - O(E V) time
- ingenious algorithms using DFS - O(E + V) time

0 1 2 3 4 5 6 7 8 9 101112
sc|2 1 2 2 2 2 2 3 3 0 0 0 O

Strongly Connected Components

Kosaraju's algorithm.
. Run DFS on reverse digraph and compute postorder.

. Run DFS on original digraph. In search loop that calls dts, consider
vertices in reverse postorder.

Theorem. Trees in second DFS are strong components. (!)

