Princeton University
COS 217: Introduction to Programming Systems
Pointer-Related Operators

Key

x A variable of any type
p, p1, p2 Pointer variables
i An integral expression

Operators Meaningful for Any Pointer Variable

"Address Of" Operator

&x The address of x.

Dereference Operator

*p The contents of the memory referenced by p.

Relational Operators

p1 == p2 1 if p1 is equal to p2, and 0 otherwise.
p1 != p2 1 if p1 is unequal to p2, and 0 otherwise.

Assignment Operator

Operators Meaningful if and only if Pointers Reference Array Elements

Array Subscripting Operator

\[p[i] \] *(p + i), that is, the contents of memory at the address that is \(i \) elements after the address referenced by \(p \).

Arithmetic Operators

\[p + i \] The address of the \(i \)th element after the one referenced by \(p \).
\[i + p \] The address of the \(i \)th element after the one referenced by \(p \).
\[p - i \] The address of the \(i \)th element before the one referenced by \(p \).
\[p++ \] Side effect: Increment \(p \) to point to the next element.
\[++p \] Side effect: Increment \(p \) to point to the next element.
\[p-- \] Side effect: Decrement \(p \) to point to the previous element.
\[--p \] Side effect: Decrement \(p \) to point to the previous element.

Arithmetic Operators

\[p1 - p2 \] The "span" of \(p1 \) and \(p2 \).

Relational Operators

\[p1 < p2 \] 1 if \(p1 \) is less than \(p2 \), and 0 otherwise.
\[p1 <= p2 \] 1 if \(p1 \) is less than or equal to \(p2 \), and 0 otherwise.
\[p1 > p2 \] 1 if \(p1 \) is greater than \(p2 \), and 0 otherwise.
\[p1 >= p2 \] 1 if \(p1 \) is greater than or equal to \(p2 \), and 0 otherwise.

Assignment Operators

\[p += i \] Side effect: Increment \(p \) so its value is the address of the \(i \)th element after the one referenced by \(p \).
\[p -= i \] Side effect: Decrement \(p \) so its value is the address of the \(i \)th element before the one referenced by \(p \).

Disallowed

\[p1 + p2 \]
\[i - p \]
\[i += p \]
\[i -= p \]
\[p == i \]