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Client-Server Model
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NetworkNetwork
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Message Passing
• Mechanism to pass data between two processes

� Sender sends a message from its memory
� Receiver receives the message and places it into its memory

• Message passing is like using a telephone
� Caller
� Receiver
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Names and Addresses
• Host name

� like a post office name; e.g., www.cs.princeton.edu

• Host address
� like a zip code; e.g., 128.112.92.191

• Port number
� like a mailbox; e.g., 0-64k
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Socket
• Socket abstraction

� An end-point of network connection
� Treat like a file descriptor

• Conceptually like a telephone
� Connect to the end of a phone plug
� You can speak to it and listen to it

NetworkNetwork
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Steps for Client and Server
Client

• Create a socket with the socket() 
system call 

• Connect the socket to the 
address of the server using the 
connect() system call 

• Send and receive data, using 
write() and read() system calls or 
send() and recv() system calls 

Server 

• Create a socket with the socket() 
system call 

• Bind the socket to an address 
using the bind() system call. For 
a server socket on the Internet, 
an address consists of a port 
number on the host machine. 

• Listen for connections with the 
listen() system call 

• Accept a connection with the 
accept() system call. This call 
typically blocks until a client 
connects with the server. 

• Send and receive data 
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client.c (part 1)
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client.c (part 2)
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server.c (part 1)

10

server.c (part 2)
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Creating A Socket (Install A Phone)

• Creating a socket
#include <sys/types.h>

#include <sys/socket.h>

int socket(int domain, int type, int protocol)

– Domain: PF_INET (Internet), PF_UNIX (local)
– Type: SOCK_STREAM, SOCK_DGRAM, SOCK_RAW
– Protocol: 0 usually for IP (see /etc/protocols for details)

• Like installing a phone
� Need to what services you want

– Local or long distance
– Voice or data
– Which company do you want to use 12

Connecting To A Socket

• Active open a socket (like dialing a phone number)
int connect(int socket, 

struct sockaddr *addr, 
int addr_len)
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Binding A Socket

• Need to give the created socket an address to listen to
(like getting a phone number)

int bind(int socket,

struct sockaddr *addr, 

int addr_len)

– Passive open on a server

server.c
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Specifying Queued Connections

• Queue connection requests (like “call waiting”)

int listen(int socket, int backlog)

– Set up the maximum number of requests that will be queued 
before being denied (usually the max is 5)

server.c
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Accepting A Socket

• Wait for a call to a socket (picking up a phone when it rings)
int accept(int socket, 

struct sockaddr *addr, 
int addr_len)

– Return a socket which is connected to the caller
– Typically blocks until the client connects to the socket

server.c
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Sending Data

• Sending a message
int send(int socket, char *buf, int blen, int flags)

client.c



17

Receiving Data

• Receiving a message
int recv(int socket, char *buf, int blen, int flags)

server.c
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Close A Socket

• Done with a socket (like hanging up the phone)

close(int socket)

• Treat it just like a file descriptor
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Summary
• Pipes

� Process communication on the same machine
� Connecting processes with stdin and stdout

• Messages
� Process communication across machines
� Socket is a common communication channels
� They are built on top of basic communication mechanisms


