
1

Client-Server Model

Server
(file server,
mail server, 
web server)

NetworkNetwork

Passive participant
Waiting to be contacted

Client

Web browser
Emailer
Applications

Active participant
Initiate contacts

2

Message Passing
• Mechanism to pass data between two processes

� Sender sends a message from its memory
� Receiver receives the message and places it into its memory

• Message passing is like using a telephone
� Caller
� Receiver

3

Network Subsystem

Application 
program

TCP or UDP

IP

Device Driver

NIC

User
Level

Kernel
Level

HW

Socket API

Reliable data stream
or unreliable data grams

Routes through the internet

Transmit or receive on LAN

Network interface card

4

Names and Addresses
• Host name

� like a post office name; e.g., www.cs.princeton.edu

• Host address
� like a zip code; e.g., 128.112.92.191

• Port number
� like a mailbox; e.g., 0-64k



5

Socket
• Socket abstraction

� An end-point of network connection
� Treat like a file descriptor

• Conceptually like a telephone
� Connect to the end of a phone plug
� You can speak to it and listen to it

NetworkNetwork

6

Steps for Client and Server
Client

• Create a socket with the socket() 
system call 

• Connect the socket to the 
address of the server using the 
connect() system call 

• Send and receive data, using 
write() and read() system calls or 
send() and recv() system calls 

Server 

• Create a socket with the socket() 
system call 

• Bind the socket to an address 
using the bind() system call. For 
a server socket on the Internet, 
an address consists of a port 
number on the host machine. 

• Listen for connections with the 
listen() system call 

• Accept a connection with the 
accept() system call. This call 
typically blocks until a client 
connects with the server. 

• Send and receive data 

7

client.c (part 1)

8

client.c (part 2)



9

server.c (part 1)

10

server.c (part 2)

11

Creating A Socket (Install A Phone)

• Creating a socket
#include <sys/types.h>

#include <sys/socket.h>

int socket(int domain, int type, int protocol)

– Domain: PF_INET (Internet), PF_UNIX (local)
– Type: SOCK_STREAM, SOCK_DGRAM, SOCK_RAW
– Protocol: 0 usually for IP (see /etc/protocols for details)

• Like installing a phone
� Need to what services you want

– Local or long distance
– Voice or data
– Which company do you want to use 12

Connecting To A Socket

• Active open a socket (like dialing a phone number)
int connect(int socket, 

struct sockaddr *addr, 
int addr_len)



13

Binding A Socket

• Need to give the created socket an address to listen to
(like getting a phone number)

int bind(int socket,

struct sockaddr *addr, 

int addr_len)

– Passive open on a server

server.c

14

Specifying Queued Connections

• Queue connection requests (like “call waiting”)

int listen(int socket, int backlog)

– Set up the maximum number of requests that will be queued 
before being denied (usually the max is 5)

server.c

15

Accepting A Socket

• Wait for a call to a socket (picking up a phone when it rings)
int accept(int socket, 

struct sockaddr *addr, 
int addr_len)

– Return a socket which is connected to the caller
– Typically blocks until the client connects to the socket

server.c

16

Sending Data

• Sending a message
int send(int socket, char *buf, int blen, int flags)

client.c



17

Receiving Data

• Receiving a message
int recv(int socket, char *buf, int blen, int flags)

server.c

18

Close A Socket

• Done with a socket (like hanging up the phone)

close(int socket)

• Treat it just like a file descriptor

19

Summary
• Pipes

� Process communication on the same machine
� Connecting processes with stdin and stdout

• Messages
� Process communication across machines
� Socket is a common communication channels
� They are built on top of basic communication mechanisms


