
Introduction to Computer Science • Robert Sedgewick and Kevin Wayne • http://www.cs.Princeton.EDU/IntroCS

4.3: Linked Structures

Lewis Caroll

Through the Looking Glass

"The name of the song is called 'Haddocks' Eyes.' "

"Oh, that's the name of the song, is it?" Alice said, trying to

feel interested.

"No, you don't understand," the Knight said, looking a little

vexed. "That's what the name is called. The name really is 'The

Aged Aged Man.' "

"Then I ought to have said 'That's what the song is called' ?"

Alice corrected herself.

"No, you oughtn't: that's quite another thing! The song is

called 'Ways and Means,' but that is only what it's called, you

know!"

"Well, what is the song, then?" said Alice, who was by this time

completely bewildered.

"I was coming to that," the Knight said. "The song really is 'A-

sitting On A Gate,' and the tune's my own invention."

2

Linked vs. Sequential Allocation

Goal: process a collection of objects.

Sequential allocation: put object one after another.

! TOY: consecutive memory cells.

! Java: array of objects.

Linked allocation: include in each object a link to the next one.

! TOY: link is memory address of next object.

! Java: link is reference to next object.

Key distinctions.

! Sequential allocation: random access, fixed size.

! Linked allocation: sequential access, variable size.

3

Linked list of strings.

! A recursive data structure.

! A string plus a pointer to another linked list (or empty list).

! Unwind recursion: linked list is a sequence of strings.

Linked lists in Java.

! Easy to define as a Java class.

! A reference to a String.

! A reference to another List.

! Use special value null to terminate list.

Linked Lists

public class List {

 private String name;

 private List next;

}

Alice nullBobCarol

List x

4

Linked List Demo

List a = new List();

a.name = "Alice";

a.next = null;

List b = new List();

b.name = "Bob";

b.next = a;

List c = new List();

c.name = "Carol";

c.next = b;

"Bob"C9

C0CA

0CB

0C5

0C6

0C7

0C8

"Alice"C0

nullC1

0C2

"Carol"C3

C9C4

valueaddr

main memory

C0

a

registers

List

C9

b

List

C3

c

List

Alice nullBobCarol

c b a

5

Traversing a List

Paradigm for traversing a null-terminated linked list.

for (List x = c; x != null; x = x.next) {

 System.out.println(x.name);

}

Alice nullBobCarol

% java List
x

Introduction to Computer Science • Robert Sedgewick and Kevin Wayne • http://www.cs.Princeton.EDU/IntroCS

4.4: Stacks and Queues

13

 Stack and Queue ADTs

Fundamental data type.

! Set of operations (add, remove, test if empty) on generic data.

! Intent is clear when we insert.

! Which object do we remove?

Stack.

! Remove the object most recently added. ("last in first out")

! Analogy: cafeteria trays, surfing Web.

Queue.

! Remove the object least recently added. ("first in first out")

! Analogy: Registrar's line.

Multiset.

! Remove any object.

! Law professor calls on arbitrary student.

14

Queue

Queue operations.

! enqeuue Insert a new object onto queue.

! dequeue Delete and return the object least recently added.

! isEmpty Is the queue empty?

public static void main(String[] args) {

 Queue q = new Queue();

 q.enqueue("Vertigo");

 q.enqueue("Just Lose It");

 q.enqueue("Pieces of Me");

 q.enqueue("Pieces of Me");

 System.out.println(q.dequeue());

 q.enqueue("Drop It Like It's Hot");

 while(!q.isEmpty())

 System.out.println(q.dequeue());

}

A simple queue client

15

More Applications of Queues

Real world applications.

! iTunes playlist.

! Echo filter to store last ten waves.

! Dispensing requests on a shared resource (printer, processor).

! Asynchronous data transfer (file IO, pipes, sockets).

! Data buffers (iPod, TiVo).

! Graph processing (stay tuned).

Simulations of the real world.

! Traffic analysis of Lincoln tunnel.

! Waiting times of customers in McDonalds .

! Determining number of cashiers to have at a supermarket.

16

 Queue: Linked List Implementation

Linked list implementation.

! Maintain linked list of elements.

! Let first be reference to first node on list.

! Let last be reference last node on list.

first

now is the time

last

17

 Queue: Linked List Implementation

Linked list implementation.

! Maintain linked list of elements.

! Let first be reference to first node on list.

! Let last be reference last node on list.

Insert.

first

now is the time

last

List x = new List();

x.item = "for";

last.next = x;

last = x;

x

18

 Queue: Linked List Implementation

Linked list implementation.

! Maintain linked list of elements.

! Let first be reference to first node on list.

! Let last be reference last node on list.

Insert.

first

now is the time

last

for

List x = new List();

x.item = "for";

last.next = x;

last = x;

x

19

 Queue: Linked List Implementation

Linked list implementation.

! Maintain linked list of elements.

! Let first be reference to first node on list.

! Let last be reference last node on list.

Insert.

first

now is the time

last

for

List x = new List();

x.item = "for";

last.next = x;

last = x;

x

20

 Queue: Linked List Implementation

Linked list implementation.

! Maintain linked list of elements.

! Let first be reference to first node on list.

! Let last be reference last node on list.

Insert.

first

now is the time

last

for

List x = new List();

x.item = "for";

last.next = x;

last = x;

21

 Queue: Linked List Implementation

Linked list implementation.

! Maintain linked list of elements.

! Let first be reference to first node on list.

! Let last be reference last node on list.

Delete.

first

now is the time

last

for

String val = first.item;

first = first.next;

return val;

nowval

22

 Queue: Linked List Implementation

Linked list implementation.

! Maintain linked list of elements.

! Let first be reference to first node on list.

! Let last be reference last node on list.

Delete.

first

now is the time

last

for

String val = first.item;

first = first.next;

return val;

nowval

23

 Queue: Linked List Implementation

Linked list implementation.

! Maintain linked list of elements.

! Let first be reference to first node on list.

! Let last be reference last node on list.

Delete.

first

now is the time

last

for

String val = first.item;

first = first.next;

return val;

nowval

24

 Queue: Linked List Implementation

public class Queue {

 private List first;

 private List last;

 private class List { String item; List next; }

 public boolean isEmpty() { return (first == null); }

 public void enqueue(String anItem) {

 List x = new List();

 x.item = anItem;

 x.next = null;

 if (isEmpty()) { first = x; last = x; }

 else { last.next = x; last = x; }

 }

 public String dequeue() {

 String val = first.item;

 first = first.next;

 return val;

 }

}

reference to first element in queue
reference to last element in queue

delete first element

nested class

25

Binary tree.

! Organize homogeneous collection of values (all same type).

! Associate two pointers with each value.

! Use pointers to access each branch of the tree.

Binary Trees

Charles

Elizabeth IIPhilip

ElizabethGeorge VIAndrew Alice

George I Olga Louis Victoria George V Mary Claude Celia

dad mom

root

26

Java implementation of a binary tree of strings is:

! A reference to the String.

! A reference to the left Tree.

! A reference to the right Tree.

Binary Tree: Java Implementation

public class Tree {

 private String s;

 private Tree left;

 private Tree right;

}

27

Parse Tree Demo

Tree a = new Tree();

a.s = "10";

a.left = null;

a.right = null;

Tree b = new Tree();

b.s = "12";

b.left = null;

b.right = null;

Tree c = new Tree();

c.s = "*";

c.left = a;

c.right = b;

Tree d = new Tree();

d.s = "7";

d.left = null;

d.right = null;

Tree e = new Tree();

e.s = "+";

e.left = c;

e.right = d;

10

null null

12

null null

* 7

null null

+

a b

c d

e

28

Parse Tree Evaluation: Java Implementation

Parse tree.

! Abstract representation of expression.

! Applications: compilers, computational linguistics.

Evaluating a parse tree.

! If string is an integer return it.

! Else, evaluate both subtrees recursively and return sum or product.

((10 * 12) + (7)) = 127

public class ParseTree {

 private String s;

 private ParseTree left;

 private ParseTree right;

 public int eval() {

 if (s.equals("+")) return left.eval() + right.eval();

 else if (s.equals("*")) return left.eval() * right.eval();

 else return Integer.parseInt(s);

 }

}

represent data as a string, e.g., "+" or "1234"

left subtree
right subtree

convert from string to integer

+

* 7

10 12

29

Preorder Traversal

How do we print out the information?

! Print string.

! Print left subtree recursively.

! Print right subtree recursively.

No parentheses!

public String toString() {

 if (s.equals("+") || s.equals("*"))

 return s + " " + left + " " + right;

 else

 return s;

}

Preorder traversal: * + + 4 5 * 6 7 8

*

+ 8

+ *

6 74 5

((4 + 5) + (6 * 7)) * 8

30

Parse Tree Construction

How do we read it back in and create the tree?

! Read string from standard input.

! If + or * operator, construct left and right subtrees recursively.

public ParseTree() {

 s = StdIn.readString();

 if (s.equals("+") || s.equals("*")) {

 left = new ParseTree();

 right = new ParseTree();

 }

}

% java ParseTree

* + + 4 5 * 6 7 8

408

*

+ 8

+ *

6 74 5

((4 + 5) + (6 * 7)) * 8

constructor

31

Other Types of Trees

Other types of trees.

! Family tree.

! Parse tree.

! Unix file hierarchy.

/

bin lib uetc

zrnyecs126

files

mandel stock

Point.java

submit

aaclarke

tsp

TSP.java tsp13509.txt

grades

32

Other Types of Trees

Other types of trees.

! Family tree.

! Parse tree.

! Unix file hierarchy.

! Phylogeny tree.

33

Other Types of Trees

Other types of trees.

! Family tree.

! Parse tree.

! Unix file hierarchy.

! Phylogeny tree.

! GUI containment hierarchy.

Reference: http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html

34

Binary Search Tree

35

America's Favorite Binary Tree

36

Other Types of Trees

Other types of trees.

! Family tree.

! Parse tree.

! Unix file hierarchy.

! Phylogeny tree.

! GUI containment hierarchy.

! Binary search trees.

! NCAA basketball tournament.

! Barnes-Hut tree for fast N-body simulation.

! . . .

37

Linked Structures Overview

Linked structures. Simple abstraction for customized access to data.

Singly linked structures.

! Linked list.

! Circular linked list.

! Parent-link tree.

Doubly linked structures.

! Binary tree.

! Patricia tries.

! Doubly linked circular list.

null

38

Conclusions

Sequential allocation: supports indexing, fixed size.

Linked allocation: variable size, supports sequential access.

Linked structures are a central programming abstraction.

! Linked lists.

! Binary trees.

! Graphs.

! Sparse matrices. 'Haddocks' Eyes'

'The Aged

 Aged Man'
'Ways and Means'

'A-sitting On A Gate'

Alice should have done this!

