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The complex functions of a living cell are carried out through the
concerted activity of many genes and gene products. This activity is
often coordinated by the organization of the genome into regulatory
modules, or sets of coregulated genes that share a common function.
Such is the case for most of the metabolic pathways as well as for
members of multiprotein complexes. Identifying this organization is
crucial for understanding cellular responses to internal and external
signals. Genome-wide expression profiles1–3 provide important
information about these cellular processes. Yet, the regulatory mech-
anisms of a cell are far from transparent in these data. Current
approaches for analyzing gene expression data4–8 allow the identifica-
tion of groups of co-expressed genes. But the regulatory programs of
these groups can be suggested only indirectly, for example, by finding
common cis-regulatory binding sites in the upstream regions of genes
in each group2,9–12.

Here, we present the module networks procedure, a method based
on probabilistic graphical models13 for inferring regulatory modules
from gene expression data. In our framework, a regulatory module is
a set of genes that are regulated in concert by a shared regulation pro-
gram that governs their behavior. A regulation program specifies the
behavior of the genes in the module as a function of the expression
level of a small set of regulators. Similar to previous methods for
inferring regulatory networks from gene expression data14–17, our
approach relies on the assumption18 that the regulators are them-
selves transcriptionally regulated, so that their expression profiles
provide information about their activity level. Clearly, this assump-
tion is sometimes violated, a common instance being transcription
factors that are regulated post-translationally. In some cases, however,
we can obtain additional evidence about regulation by considering

the expression levels of those signaling molecules that may have an
indirect transcriptional impact.

Our automated procedure (Fig. 1) takes as input a gene expression
data set and a large precompiled set of candidate regulatory genes for
the corresponding organism (not dependent on the data set), con-
taining both known and putative transcription factors and signal
transduction molecules. Given these inputs, the algorithm searches
simultaneously for a partition of genes into modules and for a regula-
tion program (Fig. 2) for each module that explains the expression
behavior of genes in the module. The regulation program of a module
specifies the set of regulatory genes that control the module and the
mRNA expression profile of the genes in the module as a function of
the expression of the module’s regulators (Fig. 2). The procedure
gives as output a list of modules and associated regulation programs.
These identify groups of coregulated genes, their regulators, the
behavior of the module as a function of the regulators’ expression and
the conditions under which regulation takes place.

We applied our method to a S. cerevisiae gene expression data set
consisting of 2,355 genes and 173 arrays3. With few exceptions,
each of the inferred modules (46 of 50) contained a functionally
coherent set of genes. Together the modules spanned a wide variety
of biological processes including metabolic pathways (for example,
glycolysis), various stress responses (for example, oxidative stress),
cell cycle–related processes, molecular functions (for example, pro-
tein folding) and cellular compartments (for example, nucleus).
Most modules (30 of 50) included genes previously known to be
regulated by the module’s predicted regulators. Many modules (15
of 50) had a match between a predicted regulator and its known cis-
regulatory binding motif (that is, a statistically significant number
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Much of a cell’s activity is organized as a network of interacting modules: sets of genes coregulated to respond to different conditions.
We present a probabilistic method for identifying regulatory modules from gene expression data. Our procedure identifies modules of
coregulated genes, their regulators and the conditions under which regulation occurs, generating testable hypotheses in the form
‘regulator X regulates module Y under conditions W’. We applied the method to a Saccharomyces cerevisiae expression data set,
showing its ability to identify functionally coherent modules and their correct regulators. We present microarray experiments
supporting three novel predictions, suggesting regulatory roles for previously uncharacterized proteins.
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Figure 2  Regulation programs represent context-specific and combinatorial
regulation. Shown is a scheme depicting three distinct modes of regulation
for a group of genes. (a) Context A. Genes in the module are not under
transcriptional regulation and are in their basal expression level. (b) Context
B. An activator gene is upregulated and, as a result, binds the upstream
regions of the module genes, thereby inducing their transcription. (c) Context
C. A repressor gene is upregulated and, as a result, blocks transcription of the
genes in the module, thereby reducing their expression levels. (d) A regulation
tree or program can represent the different modes of regulation described
above. Each node in the tree consists of a regulatory gene (for example,
‘Activator’) and a query on its qualitative value, in which an upward arrow
(red) denotes the query “is gene upregulated?” and a downward arrow (green)
denotes the query “is gene downregulated?”. Right branches represent
instances for which the answer to the query in the node is ‘true’; left branches
represent instances for which the answer is ‘false’. The expression of the
regulatory genes themselves is shown below their respective node. Each leaf
of the regulation tree is a regulation context (bordered by black dotted lines)
as defined by the queries leading to the leaf. The contexts partition the arrays
into disjoint sets, where each context includes the arrays defined by the
queries of the inputs that define the context. In context A, the activator is not
upregulated and the genes in the module are in their basal expression level
(left leaf). In contexts B and C, the activator is upregulated. In context C, the repressor is also upregulated and the module genes are repressed (right leaf).
In context B, the repressor is not upregulated and the activator induces expression of the module genes (center leaf). This regulation program specifies
combinatorial interaction; for example, in context B, the module genes are upregulated only when the activator is upregulated but the repressor is not.

of the module’s genes contained the known motif in their upstream
regions). Overall, our results provide a global view of the yeast
transcriptional network, including many instances in which our
method identifies known functional modules and their correct reg-
ulators, showing its ability to derive regulation from expression.

A regulation program specifies that certain genes regulate certain
processes under certain conditions. Our method thus generates
detailed, testable hypotheses, suggesting specific roles for a regulator
and the conditions under which it acts. We tested experimentally the

computational predictions for three putative regulators with
unknown functions (a transcription factor and two signaling mole-
cules). Our method’s results make specific predictions regarding the
conditions under which these regulators operate. Using microarray
analysis, we compared the transcriptional responses of the respective
genetically disrupted strains with their congenic wild-types under
these conditions. Deletion of each of the three regulators caused a
marked impairment in the expression of a substantial fraction of their
computationally predicted targets, supporting the method’s predic-
tions and giving important insight regarding the function of these
uncharacterized regulators.

RESULTS
We compiled a list of 466 candidate regulators and applied our proce-
dure to 2,355 genes in the 173 arrays of the yeast stress data set3,
resulting in automatic inference of 50 modules. We analyzed each of
the resultant modules (Fig. 1) using a variety of external data sources,
evaluating the functional coherence of its gene products and the
validity of its regulatory program.

Sample modules
We first present in detail several of the inferred modules, selected to
show the method’s ability to reproduce diverse features of regulatory
programs.

The respiration module (Fig. 3) is a clear example of a predicted
module and of the validation process. It consists primarily of genes
encoding respiration proteins (39 of 55) and glucose-metabolism reg-
ulators (6 of 55). The inferred regulatory program specifies the Hap4
transcription factor as the module’s top (activating) regulator, pri-
marily under stationary phase (a growth phase in which nutrients,
primarily glucose, are depleted). This prediction is consistent with the
known role of Hap4 in activation of respiration1,19. Indeed, our post-
analysis detected a Hap4-binding DNA sequence motif (bound by the
Hap2/3/4/5 complex) in the upstream region of 29 of 55 genes in the
module (P < 2 × 10–13). This motif also appears in non-respiration
genes (mitochondrial genes and glucose-metabolism regulators),
which, together with their matching expression profiles, supports
their inclusion as part of the module. When Hap4 is not induced, the
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module is activated more mildly or is repressed. The method suggests
that these changes are regulated by other regulators, such as the pro-
tein phosphatase type 1 regulatory subunit Gac1 and the transcrip-
tion factor Msn4. Indeed, the stress response element (STRE),
recognized by Msn4, appears in the upstream region of 32 of 55 genes
in the module (P < 10–3), as well as in those of many of the genes con-
taining the Hap4 motif (17 of 29 genes; P < 7 × 10–10), supporting our
placement of both regulators in one control program.

The nitrogen catabolite repression module (Supplementary Fig. 1
online) shows the ability of our method to capture an entire cellular
response whose genes participate in diverse metabolic pathways and
cellular roles (12 of 29 in allantoin and urea metabolism, 5 of 29 in
amino-acid metabolism and 6 of 29 in sulfur or methionine metabo-
lism), all of which relate to the process by which the yeast uses the best
available nitrogen source. Gat1 is suggested as the key (activating) reg-
ulator of this module, further supported by the presence of the GATA
motif, the known binding sequence for Gat1, in the upstream region
of 26 of 29 genes (P < 10–17). This module also shows that the method
can identify context-specific regulation, as the similarity in expression
of genes in the module is mostly pronounced in stationary phase (17 of
22 experiments; P < 10–4), amino-acid starvation (5 of 5; P < 9 × 10–5)
and nitrogen depletion (10 of 10; P < 8 × 10–9), all of which are condi-
tions in which using alternative nitrogen sources is crucial. Two addi-
tional known regulators involved in this response, Uga3 and Dal80, are
suggested as members, rather than regulators, of the module.

The galactose metabolism module (Supplementary Fig. 2 online)
illustrates our method’s ability to identify small expression signatures,
as the module consisted of only four Gal4-regulated genes and pre-
dicted Gal4 as a regulator, with a predicted regulatory role that
includes activation in galactose-containing medium.

The energy, osmolarity and cAMP signaling module
(Supplementary Fig. 3 online) shows that our method can identify
regulation by proteins other than transcription factors, as the top pre-
dicted regulator was Tpk1, a catalytic subunit of the cAMP dependent
protein kinase (PKA). This prediction is supported by a recent study20

showing that the expression of several genes in the module (for exam-
ple, Tps1) is strongly affected by Tpk1 activity in osmotic stress,
which was among the conditions predicted by the method to be regu-
lated by Tpk1. Further support is given by the presence of the STRE
motif, known to be bound by transcription factors that are regulated
by Tpk1 (ref. 20), in the upstream region of most genes in the module
(50 of 64; P < 3 × 10–11), often in combination with other motifs
bound by Tpk1-modulated transcription factors, such as Adr1 (37 of
64; P < 6 × 10–3) and Cat8 (26 of 64; P < 2 × 10–3). Our method sug-
gests that Tpk1 is an activator of the module, however, in contrast to
its known role as a repressor21. We discuss this discrepancy below.

Evaluation of module content and regulation programs
We evaluated all 50 modules to test whether the proteins encoded by
genes in the same module had related functions. We scored the func-
tional/biological coherence of each module (Table 1) according to the
percentage of its genes covered by annotations significantly enriched
in the module (P < 0.01). Most modules (31 of 50) had a coherence
level above 50% and only 4 of 50 had gene coherence below 30%. The
actual coherence levels may be considerably higher, as many genes are
not annotated in current databases. Indeed, an in-depth inspection
identified many cases in which genes known to be associated with the
main process of the module were simply not annotated as such.

We obtained a global view of the modules and their function by
compiling all gene annotations and motifs significantly enriched in

Figure 3 The respiration and carbon regulation
module (55 genes). (a) Regulation tree/program.
Each node in the tree represents a regulator (for
example, Hap4) and a query of its qualitative value
(for example, red upward arrow next to Hap4 for
“is Hap4 upregulated?”). The expression of the
regulators themselves is shown below their
respective node. (b) Gene expression profiles.
Genes, rows; arrays, columns. Arrays are arranged
according to the regulation tree. For example,
the rightmost leaf includes the arrays in which
both Hap4 and HMLAlpha2 are upregulated.
Contexts that consist primarily of one or two
types of experimental conditions are labeled.
(c) Significant annotations. Colored entries
indicate genes with the respective annotation. The
most significantly enriched annotations for this
module were selected for display (the number of
annotated genes and the calculated P value for
the enrichment of each annotation are shown in
parentheses). Note the enrichment of three
annotations representing a biochemical process,
cellular compartment and physiological process,
respectively, all relating to cellular respiration.
(d) Promoter analysis. Lines represent 500 bp of
genomic sequence located upstream to the start
codon of each of the genes; colored boxes
represent the presence of cis-regulatory motifs
located in these regions. Note the enrichment of
both the HAP4 motif (purple) and the stress
response element (STRE; green), recognized by
Hap4 and Msn4, respectively, supporting their
inclusion in the module’s regulation program.
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each module into a single matrix5 (Fig. 4a). This presentation enables
an automatic approach for deriving rich descriptions for modules.
For example, the attributes for the respiration module (Fig. 3) are
immediately apparent in this representation, including the Hap4 and
Msn4 (STRE) binding sites and the ion transport, TCA cycle, aerobic
respiration, and mitochondrion annotated genes (Fig. 4a). The
matrix representation also gives further support to the inferred mod-
ules. For example, it justifies the division of amino-acid metabolic
processes into four modules (Fig. 4b): whereas the modules share cer-
tain attributes (for example, amino acid metabolism), each is charac-
terized by a unique combination of gene annotations (for example,
only module 9 is also annotated as starvation response).
Furthermore, all of the modules in this module group are associated

with a common cis-regulatory motif (Gcn4), but each has a unique
signature of cis-regulatory motifs.

To obtain a global perspective on the relationships between differ-
ent modules, and the extent to which they group together, we com-
piled a graph of modules and cis-regulatory motifs, and we connected
modules to their significantly enriched motifs (Fig. 5). In this view,
sets of similar but distinct modules, such as amino acid metabolism
modules (8–11), energy modules (1–3, 25, 33, 41) and DNA/RNA
modules (13–15, 17, 18) form module groups, such that all modules
share at least one motif. Different modules in a group are again char-
acterized by partly overlapping but distinct combinations of motifs.
We also searched for pairs of motifs that are significantly enriched (as
a pair) in the upstream regions of module genes (Supplementary

Table 1 online). Although different modules
were characterized by distinct motif pairs,
there was overlap between the motif pairs of
modules within a module group (see, for
example, Supplementary Table 1 online),
providing further support for the combinato-
rial nature of the inferred regulation pro-
grams. When we examined the predicted
regulators of modules (Fig. 5), we saw that
modules belonging to the same module group
appear to share some, but not all, of their reg-
ulators. These results suggest a higher level of
modularity of the yeast transcriptional net-
work, in which functionally related modules
share some of their regulatory elements, yet
each module is characterized by a unique reg-
ulatory program.

We next evaluated the inferred regulation
programs. We compared the known function
of the inferred regulators with the method’s
predictions, where known function is based
on a compiled list of literature references
(Supplementary Table 2 online), in which
direct experimental evidence exists for the
role of the predicted regulators. In most mod-
ules (35 of 50), the regulators were predicted
to have a role under the expected conditions
(Table 1). Most modules (30 of 50) also
included genes known to be regulated by at
least one of the module’s predicted regulators
(Table 1). Many modules (15 of 50) also had
an exact match between cis-regulatory motifs
enriched (P < 10–4) in upstream regions of the
module’s genes and the regulator known to
bind to that motif (Table 1).

To identify the function of the regulators,
we associated each regulator with biological
processes, experimental conditions and pos-
sibly a binding motif. As a regulator X may
regulate more than one module, its targets
consist of the union of the genes in all mod-
ules predicted to be regulated by X. We
tested the targets of each regulator for
enrichment of the same motifs and gene
annotations as above (Fig. 4a). In addition,
we tested each regulator for experimental
conditions that it significantly regulates by
examining how conditions are split by each

Respective regulator known to regulate module genes or their implied process         Partial evidence

Respective regulator known to have a role under the predicted condition Partial evidence 

Enrichment for motif known to participate in regulation by respective regulator Partial evidence

# Module
a

# Gb C (%)c Reg.d M C G Reg.d M C G Reg.d M C G Reg.d M C G Reg.d M C G Reg.d M C G
1 Respiration and carbon regulation 55 84 Hap4 HMLAlpha2 Cmk1 Gac1 Xbp1 Msn4
2 Energy, osmolarity and cAMP signaling 64 64 Tpk1 Kin82 Yer184c Cmk1 Ppt1 Kns1
3 Energy and osmotic stress I 31 65 Xbp1 Kin82 Tpk1
4 Energy and osmotic stress II 42 38 Ypl230w Yap6 Gac1 Wsc4
5 Glycolysis and folding 37 86 Gcn20 Ecm22 Bmh1 Bas1
6 Galactose metabolism 4 100 Gal4 Gac1 Hir3 Ime4
7 Snf kinase regulated processes 74 47 Ypl230w Yap6 Tos8 Sip2
8 Nitrogen catabolite repression 29 66 Gat1 Plp2
9 Amino acid metabolism I 39 95 Gat1 Ime4 Cdc20 Slt2

10 Amino acid metabolism II 37 95 Xbp1 Hap4 Afr1 Uga3 Ppt1
11 Amino acid and purine metabolism 53 92 Gat1 Ppz2 Rim11
12 Nuclear 47 47 HMLAlpha2 Ino2
13 Mixed I 28 50 Pph3 Ras2 Tpk1
14 Ribosomal and phosphate metabolism 32 81 Ppt1 Sip2 Cad1
15 mRNA,rRNA and tRNA processing 43 40 Lsg1 Tpk2 Ppt1
16 RNA processing and cell cycle 59 36 Ypl230w Ime4 Ppt1 Tpk2 Rho2 Mcm1
17 DNA and RNA processing 77 43 Tpk1 Gis1 Ppt1
18 TFs and RNA processing 59 68 Gis1 Pph3 Tpk2 Lsg1
19 TFs and nuclear transport 48 56 Ypl230w Met18 Ppt1
20 TFs I 53 92 Cdc14 Mcm1 Ksp1
21 TFs II 50 54
22 TFs, cell wall and mating 39 59 Ptc3 Sps1
23 TFs and sporulation 43 60 Rcs1 Ypl133c
24 Sporulation and TFs 74 39 Gcn20 Gat1 Ste5
25 Sporulation and cAMP pathway 59 37 Xbp1 Ypl230w Sip2 Not3
26 Sporulation and cell wall 78 40 Ypl230w Yap6 Msn4
27 Cell wall and transport I 23 48 Shp1 Bcy1 Gal80 Ime1 Yak1
28 Cell wall and transport II 63 46 Ypl230w Kin82 Msn4
29 Cell differentiation 41 71 Ypl230w Ypk1 Cna1
30 Cell cycle (G2/M) 30 70 Cdc14 Clb1 Far1
31 Cell cycle, TFs and DNA metabolism 71 85 Gis1 Ste5 Clb5
32 Cell cycle and general TFs 64 72 Ime4 Ume1 Xbp1 Prr1 Cnb1 Arp9
33 Mitochondrial and signalling 87 60 Tpk1 Cmk1 Yer184c Gis1
34 Mitochondrial and protein fate 37 78 Ypk1 Sds22 Rsc3
35 Trafficking and mitochondrial 87 56 Tpk1 Sds22 Etr1
36 ER and nuclear 79 86 Gcn20 Yjl103c Not3 Tup1
37 Proteasome and endocytosis 31 71 Ime4 Cup9 Bmh2 Hrt1
38 Protein modification and trafficking 62 79 Ypl230w Ptc3 Cdc42
39 Protein folding 23 87 Bmh1 Bcy1 Ypl230w
40 Oxidative stress I 15 80 Yap1 Sko1 Far1
41 Oxidative stress II 15 73 Tos8 Flo8
42 Unkown (sub-telomeric) 82 45 Gcn20
43 Unknown genes I 36 42
44 Unknown genes II 29 14 Apg1 Pcl10
45 Unknown genes III 39 5 Xbp1 Kar4
46 Mixed II 52 42 Gcn20 Tos8 Sip2
47 Mixed III 41 63 Gcn20 Ume1 Cnb1
48 Mixed IV 35 29 Fkh1 Sho1
49 Ty ORFs 16 6
50 Missing values 64 39

Table 1  Summary of module analysis and validation

aEach module was assigned a name based on the largest one or two categories of genes in the module (combining 
gene annotations from SGD and the literature). These concise names are used to facilitate the presentation and 
may not convey the full content of some of the more heterogeneous modules (see modules and their significant 
annotations in Fig. 4). bNumber of genes in module. cFunctional/biological coherence of each module, measured as 
the percentage of genes in the module covered by significant gene annotations (P < 0.01). dRegulators predicted 
to regulate each module, along with three scores for each regulator compiled from the literature (for a list of all 
literature references used, see Supplementary Table 2 online). Some modules (21, 43, 49, 50) did not have 
regulators, as none of the candidate regulators was predictive of the expression profile of their gene members.

Darker boxes indicate biological experiments supporting the prediction; lighter boxes indicate indirect or 
partial evidence. M, enrichment for a motif known to participate in regulation by the respective regulator in 
upstream regions of genes in the module; C, experimental evidence for contribution of the respective 
regulator to the transcriptional response under the predicted conditions; G, direct experimental evidence 
showing that at least one of the genes in the module, or a process significantly overrepresented in the 
module genes, is regulated by the respective regulator. TF, transcription factor.
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b

a

Figure 4  Enrichment of annotations and motif binding sites in modules and in predicted targets of regulators. (a) Shown are matrices whose entries
represent the percentage of genes associated with annotations in each module (left) or in all predicted targets of each regulator (right). Only significantly
enriched annotations (P < 0.05, Bonferroni-corrected) are shown. Binding sites (top blocks, green) include both known motifs (TRANSFAC39) and de novo
motifs (identified by a motif-finding program12 applied to the upstream regions of the genes in each module; de novo motifs are named with the character
‘N’ followed by the module number from which the motif was identified; de novo motifs are available in Supplementary Table 5 online). Gene annotations
(middle block, black) were compiled from GO32 (G), MIPS33 (M) and KEGG34 (K). The bottom right matrix shows significant conditions regulated by each
regulator, and the entries correspond to P values for each condition (mild heat shock, 27 °C to 33 °C; severe heat shock, 17, 21, 25 or 29 °C to 37 °C).
A subset of all attributes and regulators was selected for their diversity. A full version of matrices with all attributes and all regulators is available on our
website. Entries explicitly referenced in the text are highlighted with red rectangles and labeled with numbered arrows: 1, significant respiration module
annotations; 2, selected significant annotations for Gat1 regulator; 3, selected significant annotations for putative regulator Ypl230w; 4, significant
conditions for Ppt1 and Kin82 that were experimentally tested. (b) Submatrix of significant annotations for amino acid metabolism related modules
(8–11). Each module is characterized by a different combination of motifs and gene annotations, supporting the partition into different modules.
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relevant regulation tree. For example, in the respiration module
(Fig. 3), Hap4 upregulation distinguishes stationary-phase condi-
tions from the rest (right branch; Hap4 activates the module) and
would thus be associated with regulation in stationary phase.
Significant conditions for a particular regulator can thus be identi-
fied either by visual inspection of the regulation tree or by an auto-
mated statistical procedure. The results of this procedure are
summarized in Figure 4a. As an example of the resulting associa-
tions, the matrix suggests that Gat1 regulates nitrogen and sulfur
metabolism processes, binds to the GATA motif and works under
conditions of nitrogen depletion (Fig. 4a).

When we consider uncharacterized regulators, the predicted regula-
tor annotations provide focused hypotheses about the processes they
regulate, the conditions under which they work and the cis-regulatory
motifs through which their regulation is mediated. For example, we
can predict that the putative transcription factor Ypl230w regulates
genes important for protein folding during stationary phase (Fig. 4a).
The ability to generate detailed hypotheses, in the form ‘regulator X
regulates process Y under conditions W’, is among the most powerful
features of the module networks procedure, as it also suggests the spe-
cific experiments that can validate these hypotheses.

Experimental tests
We selected three hypotheses suggested by the method, involving
largely uncharacterized putative regulators, and obtained the rele-
vant yeast deletion strains22. To test our ability to predict different
types of regulatory mechanisms, we selected a putative zinc-finger
transcription factor, Ypl230w, and two putative signaling mole-
cules, the protein kinase Kin82 and the phosphatase Ppt1. Under
normal growth conditions, all three deletion strains showed no
apparent abnormalities.

As discussed above, each hypothesis generated by the method pro-
vides the significant conditions under which the regulator is active,
and thereby specifies the experimental conditions under which the
mutant should be tested. In concordance with the method’s hypothe-
ses (Fig. 4a), we tested ∆Kin82 under severe heat shock conditions
(25 °C to 37 °C), ∆Ppt1 during hypo-osmotic shift and ∆Ypl230w
during the entry to stationary phase.

In each experiment, we used microarray analysis to compare the
transcriptional response in the deletion strain to that of the wild-type
strain under the same conditions. These genome-wide experiments
enable a complete evaluation of the accuracy of our predictions for
each regulator: whether it has a regulatory role in the predicted condi-
tions, whether it regulates genes in modules that it was predicted to
regulate and most importantly, whether it regulates processes that the
method predicted it to regulate.

We used a paired t-test (P < 0.05) to identify the genes that were
differentially expressed between wild-type and mutant strains
under the tested conditions. The number of such genes was much
higher than expected by chance (1,034 for ∆Kin82, 1,334 for ∆Ppt1
and 1,014 for ∆Ypl230w), showing that all three regulators have a
role in the predicted conditions. To focus on the most significant
changes, we examined only genes with a significant relative change

Hap4

Xbp1

Yer184c

Yap6

Gat1

Ime4

Lsg1 

Msn4

Gac1

Gis1

Ypl230w

Not3

Sip2

Amino acid
metabolism

Energy 
and cAMP 
signaling

DNA and RNA
processing

Nuclear

1

2

3

25

33

41

STRE

N41

HAP234

4

26

REPCAR
CAT8

N26
ADR1

39

47

HSF

HAC1

XBP1

30

42 MCM1

N30

31

36

ABF_C

N36

5

16

Kin82

Cmk1

Tpk1

Ppt1

N11

GATA8

10

9

GCN4

CBF1_B

Tpk2

Pph3 13

14

15

17

N14

N13

Regulation supported in literature

Regulator (signaling molecule)

Regulator (transcription factor)

Inferred regulation

48 Module (number)

Experimentally tested regulator

Enriched cis-regulatory motif

Bmh1

Gcn20

GCR1

18

MIG1

N18

11

Figure 5  Global view and higher order organization of modules. The graph
depicts inferred modules (middle; numbered squares), their significantly
enriched cis-regulatory motifs (right; significant motifs from Fig. 4a) and their
associated regulators (left; ovals with black border for transcription factors or
with green border for signal transduction molecules). Modules are connected
to their significantly enriched motifs by solid blue lines. Module groups,
consisting of sets of modules that share a common motif, and their
associated motifs are enclosed in bold boxes. Only connected components
that include two or more modules are shown. Motifs connected to all modules
of their component are marked in bold. Modules are also connected to their
predicted regulators. Red edges between a regulator and a module are
supported in the literature: either the module contains genes that are known
targets of the regulator (Table 1, G column) or upstream regions of genes in
the module are enriched for the cis-regulatory motif known to be bound by the
regulator (Table 1, M column). Regulators that we tested experimentally are
marked in yellow. Module groups are defined as sets of modules that share a
single significant cis-regulatory motif. Module groups whose modules are
functionally related are labeled (right). Modules belonging to the same
module group seem to share regulators and motifs, with individual modules
having different combinations of these regulatory elements.
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in expression between the wild-type and mutant expression profiles,
a total of 281 genes for ∆Kin82, 602 genes for ∆Ppt1 and 341 genes
for ∆Ypl230w (Fig. 6a and Supplementary Table 3 online). Under
normal conditions, there are few differences between wild-type and
mutant strains (data not shown).

To test whether our method correctly predicted the targets of each
regulator, we examined the distribution of the differentially expressed
genes among the modules. For each putative regulator X, we calcu-
lated a P value for the enrichment of differentially expressed genes in
each module and then ranked the modules according to these P val-
ues. In all three cases, the highest ranking module was predicted to be
regulated by X (Fig. 6b). In each case, 25% (∆Ppt1; P < 9 × 10–3), 26%
(∆Kin82; P < 10–4) and 30% (∆Ypl230w; P < 10–4) of the genes in the
highest ranking module were differentially expressed.

Finally, we tried to identify the process regulated by each regulator
by searching for significantly enriched functional annotations in its
set of differentially expressed genes. In two cases (∆Ypl230w and
∆Ppt1), the annotations matched those predicted for the regulator
(Fig. 6c), supporting the method’s suggestions for the regulatory roles
of the tested regulators: Ypl230w activates protein-folding, cell-wall
and ATP-binding genes, and Ppt1 represses phosphate metabolism
and rRNA processing.

Altogether, the experimental validations support the functions
proposed by our method and show its ability to accurately predict
functions for regulators, their targets and the experimental condi-
tions under which this regulation occurs, providing insight into the
roles of regulatory genes.

DISCUSSION
Discovering biological organization from gene expression data is a
promising but challenging task. The module networks identification
method presented here offers unique capabilities in extracting modu-
larity and regulation from expression data.

Although other approaches identify modules of coregulated genes
and their shared cis-regulatory motifs6,10, they do not directly sug-
gest the regulators themselves. In contrast, our method identifies
both regulatory modules and their control programs, suggesting
concrete regulators for each module, their effect and combinatorial
interactions and the experimental conditions under which they are
active. Our comprehensive evaluation using functional annotations,
cis-regulatory motifs and the literature validates the coherence of the
modules and the consistency of the regulation programs. On a global
scale, it also suggests a higher order organization of combinatorial
regulation in the yeast transcriptional network, in which distinct
modules are characterized by partly overlapping combinations of cis-
regulatory motifs and regulators.

Perhaps the most powerful feature of our method is its ability to
generate detailed testable hypotheses concerning the role of specific
regulators and the conditions under which this regulation takes
place. We offer experimental results supporting three of our com-
putationally generated hypotheses, suggesting regulatory roles for
previously uncharacterized proteins. Our other hypotheses have
not yet been tested.

A key question regarding the validity of our approach is explaining
how regulatory events can be inferred from gene expression data. To
identify a regulatory relation in expression data, both the regulator and
its targets must be transcriptionally regulated18, resulting in detectable
changes in their expression. Recent large-scale analyses of the regulatory
networks of Escherichia coli23 and S. cerevisiae24,25 found a prevalence of
cases in which the regulators are themselves transcriptionally regulated,
a process whose functional importance is supported both theoretically

and experimentally26,27. Such concordant changes in the expression of
both the regulators and their targets (for example, Fig. 7b,d) allow our
automated procedure to detect statistical associations between them.
Indeed, using recently published genome-wide cis-regulatory location
data24, we found that some of the inferred modules and their associated
transcription factors are part of such regulatory structures (Fig. 7a,f).
The location data allowed only a limited comparison, as it was obtained
under normal growth conditions.
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Figure 6 Microarray experiments testing functional predictions for putative
regulators. (a) Expression data for the differentially expressed genes
(extracted using paired t-test) for both the wild-type (WT) and mutant (∆)
time series in the following experiments: ∆Ypl230w during stationary phase,
∆Ppt1 during hypo-osmotic shift and ∆Kin82 under heat shock. (b) Ranked
modules table for each tested regulator X; ranking is based on P value
calculated for enrichment of differentially expressed genes in each module.
All modules significantly enriched for these genes (P < 0.05) are shown
along with the number of differentially expressed genes out of the total
number of genes in the module and the corresponding P value for the
enrichment. Modules predicted to be regulated by the respective regulator X
are highlighted in red. (c) Functional predictions for tested regulators. The
left column (Predicted) for each regulator shows all annotations predicted
by the method to be associated with that regulator (extracted from the
corresponding column in Fig. 4a). The right column (Tested) shows which
annotations were also significantly enriched in the set of differentially
expressed genes of each regulator (P < 0.05; black triangles), where the
intensity of each entry represents the fraction of genes with the annotation
from the set of differentially expressed genes.
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Our method is also able to identify correct regulatory roles for sig-
nal transduction molecules from expression data. We attribute this
ability to the presence of positive and negative feedback loops28 in
which a signaling molecule regulates a transcription factor that, in
turn, regulates the activity of the gene encoding the signaling mole-
cule (Fig. 7c,d). We found evidence for the presence of such feedback
loops in the predicted regulation programs for some modules (for
example, Fig. 7c). Negative feedback loops also explain why Tpk1 is
inferred as an activator rather than a repressor (Fig. 7e).

Overall, our results show that regulatory events, including post-
transcriptional ones, have a detectable signature in the expression of
genes encoding transcription factors and signal transduction molecules.
Notably, our computational method will probably succeed in organisms
other than yeast. For example, in E. coli, approximately 40% of tran-
scription factors are autoregulated26,27, potentially increasing the power
of our approach. In addition, our method’s ability to detect combinato-
rial regulation is crucial for its application to higher eukaryotes.

Despite the successes described above, our method fails to iden-
tify certain regulatory relations and may occasionally predict regu-
latory relationships that do not hold. In some cases, the regulator’s
expression does not change sufficiently to be detected. This behav-
ior can occur when the regulator’s activity is attributed mostly to
post-transcriptional changes or when the regulatory event occurs pri-
marily under specific conditions that are not included in our data set.
We expect the latter relations to be identified by our method if given a
more appropriate data set.

Our method may also fail to identify certain correct regulatory rela-
tions despite a detectable change in the regulator’s expression pattern.
If several regulators participate in the same regulatory event, our
method typically identifies only one representative of this group, as
the effect of the remaining regulators is generally indistinguishable
based on expression data alone. In other cases, a gene belonging to the
set of candidate regulators may be highly predictive of the module,
often because it is a member of the module but occasionally simply by
chance. Such a gene may be mistakenly selected by the procedure as
the module’s regulator, leading to the prediction of an incorrect regu-
latory relationship. In such cases, the true regulator may become
redundant and is often assigned as a module member together with
its targets. Finally, some regulatory relations may be specific to a regu-
lator and its target and cannot be generalized to an entire module. As
our method is designed to identify shared regulatory responses across
a module, it will not detect such focused regulatory relations.

Our computational framework also has several important limita-
tions. For example, we want to automatically select the appropriate
number of modules for a given data set also, unlike other approaches
(for example, that described in ref. 6), our modules are currently non-
overlapping, so that a gene may belong only to a single module. It is
possible to extend our framework to address these issues.

Overall, our method provides a clear global view of functional
modules and their regulation and suggests concrete hypotheses con-
cerning the role of specific regulators. As more diverse gene expres-
sion data sets become available, it is our belief that applying the

Figure 7 Regulatory components allowing
inference of regulation from expression data.
We used genome-wide location data24 and the
literature to show how the method identifies
regulators from expression data. We present
different types of regulatory components and an
inferred module in which such a component is
found. For each regulatory component, the
relevant transcription factors (TFs), signal
transduction molecules (SMs), target genes (blue)
and their relations (directed arrows) are shown.
Cis-regulation events using transcription factors
are shown in black arrows, post-transcriptional
events using signaling molecules in green arrows.
The gene in red is that predicted as a regulator of
the module. The targets in blue are those genes
that are both predicted by our method to be
regulated by the red gene and also bound by the
transcription factor according to the location data
(P < 0.001; ref. 24). Black regulators are not
expected to be inferred from gene expression data, because, in general, their mRNA levels do not change. (a) Regulator chain. Transcription factor (Phd1)
activates its targets that include an additional secondary transcription factor (Hap4). The secondary transcription factor activates the secondary targets
(Cox4, Cox6, Atp17, Cox7, Cox8, Qcr2, Mir1, Qcr7, Cox12, Qcr9, Cox13, Cyt1, Atp1, Atp2, Atp3, Rip1, Atp5, Atp7, Atp20, Cor1 and Ylr294c). Only the
secondary transcription factor is inferred as the module’s regulator. (b) Dynamic behavior of regulator chain. Transcription factor (Phd1) activity (top graph,
black) rises with no change in its mRNA level (bottom graph, black). Transcription factor induces expression of secondary transcription factor (Hap4; bottom
graph, red), resulting in a greater amount of active secondary transcription factor (top graph, red). Finally, secondary transcription factor activation leads to a
rise in the expression of its targets (bottom graph, blue). (c) Positive signaling loop. Signaling molecule (Sip2) activates transcription factor (Msn4; ref. 42).
Transcription factor induces transcription of various targets (Vid24, Tor1 and Gut2), possibly including the signaling molecule. The coordinated expression
changes in signaling molecule and targets allow signaling molecule (but not transcription factor) to be correctly inferred as a regulator. (d) Dynamic behavior
of signaling multi-component loop. Signaling molecule (Sip2) protein (top graph, red) induces transcription factor (Msn4) activity (top graph, black).
Transcription factor induces expression of signaling molecule (bottom graph, red) and target genes (bottom graph, blue). Transcription factor expression level
is unchanged. (e) Negative signaling loop. Signaling molecule (Tpk1) inhibits activity of transcription factor (Msn4; ref. 43). Transcription factor (Msn4)
induces transcription of the module’s genes (for example, Nth1 (ref. 44), Tps1 (ref. 45) and Glo1 (ref. 46)) and possibly of signaling molecule (supported by
presence of STRE, an Msn4 bound motif, in Tpk1’s upstream region; Tpk1 is also part of the cAMP/PKA pathway and other components of the pathway were
previously shown to be induced by Msn4; ref. 3). Signaling molecule changes concordantly with targets and is thus correctly inferred by the method as the
module’s regulator. But, because both signaling molecule and the targets are upregulated, the method predicts that signaling molecule activates the module,
in contrast to its actual inhibitory role. (f) Single input module (auto-regulation). Transcription factor (Yap6) activates its own transcription and that of its
target genes (Hxt12, Hxt15, Hxt16, Yil122w, Fsp2, Yol157c, Yil172c and Kel2).
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module networks method to such data sets may result in important
new insights in the ongoing endeavor to understand the complex web
of biological regulation.

METHODS
Candidate regulators. We compiled a set of 466 candidate regulators whose
annotations in the Saccharomyces Genome Database (SGD; ref. 29) or Yeast
Proteome Database (YPD; ref. 30) suggest a potential regulatory role in the
broad sense: both transcription factors and signaling proteins that may have
transcriptional impact18. We also included genes described to be similar to
such regulators. We excluded global regulators, whose regulation is not spe-
cific to a small set of genes or processes. A full candidate regulators list is avail-
able in Supplementary Table 4 online. We binned the gene expression of the
candidate regulators into three categories: downregulated, no change and
upregulated, using k-means clustering15,31.

DNA microarray data set. We used an S. cerevisiae gene expression data set con-
sisting of 173 microarrays that measure responses to various stress conditions3.
We downloaded these expression data, in log (base 2) ratio to control format,
from the Stanford Microarray Database. We chose a subset of 2,355 genes that
have a significant change in gene expression under the measured stress condi-
tions, excluding members of the generic environmental stress response cluster3.
Our gene set also included all genes chosen as candidate regulators; a full gene
list can be found at our website.

Database annotations. We downloaded the Gene Ontology (GO; ref. 32) hier-
archy associations from SGD29 on 23 October 2002 (version 1.311), the
Munich Information Center for Protein Sequence (MIPS; ref. 33) functional
categories on 15 August 2002 and the Kyoto Encyclopedia of Genes and
Genomes (KEGG; ref. 34) metabolic pathways on 2 July 2002.

Regulation programs. A regulation program specifies a set of contexts and the
response of the module in each context. A context is a rule describing the qualita-
tive behavior (upregulation, no change or downregulation) of a small set of genes
that control the expression of the genes in the module. This set of rules is orga-
nized as a regression tree in which each path to a leaf in the tree defines a context
using the tests on the path. A regression tree is composed of two basic building
blocks: decision nodes and leaf nodes. Each decision node corresponds to one of
the regulatory inputs (regulator expression values) and a query on its value (for
example, “is Hap4 upregulated?”). Each decision node has two child nodes: the
right child node is chosen when the answer to the corresponding query is true;
the left node is chosen when not. For a given array, one begins at the root node
and continues down the tree in a path according to the answers to the queries in
that particular array. Thus, the context specifies a set of arrays: those in which the
path down the tree reaches the corresponding leaf. The response in each context
is modeled as a normal distribution over the expression values of the module’s
genes in these arrays; this distribution is encoded using a mean and variance
stored at the corresponding leaf. The model semantics is that, given a gene g in the
module and an array a in a context, the probability of observing some expression
value for gene g in array a is governed by the normal distribution specified for
that context. For each array, all genes in the same module follow the same normal
distribution. For a context in which the genes are tightly coregulated, the distrib-
ution will have a small variance. For a context in which the genes are not tightly
regulated, the distribution may have a large variance. Thus, a regression tree
allows for expression profiles with different degrees of conservation of the mean
behavior of the module.

Learning module networks. Our procedure is iterative; in each iteration, the
procedure searches for a regulation program for each module and then reas-
signs each gene to the module whose program best predicts its behavior. These
two steps are iterated until convergence in reached. The approach is model-
based and integrates the ideas and rationale previously described15,35: we
define a space of possible models and use a statistically based likelihood score
called the Bayesian score36 to evaluate a model’s fit to the data. Our iterative
learning procedure attempts to search for the model with the highest score by
using the Expectation Maximization (EM) algorithm37,38. An important prop-
erty of the EM algorithm is that each iteration is guaranteed to improve the
likelihood of the model until convergence to a local maximum of the score is

achieved. For clarity, we present a simplified version that captures the algo-
rithm’s essence (see the technical report at the website for exact details). Each
iteration of the algorithm consists of two steps: an E-step and an M-step. In the
M-step, the procedure is given a partition of the genes into modules and learns
the best regulation program (regression tree) for each module. For computa-
tional efficiency, some M-steps optimize only the parameters of the normal
distributions at the leaves of the regulation tree and leave the tree structure
unchanged. An M-step that re-learns the regulation tree structure is used only
after iterations of E-steps and parameter-optimizing M-steps converge. The
regulation program is learned through a combinatorial search over the space
of trees. The tree is grown from the root to its leaves. At any given node, the
query that best partitions the gene expression into two distinct distributions is
chosen until no such split exists. In the E-step, given the inferred regulation
programs, we determine the module whose associated regulation program
best predicts each gene’s behavior. Each regulation program defines a proba-
bility distribution over the gene’s expression levels in each array. We can test
the probability of a gene’s measured expression values in the data set under
each regulatory program as follows. We evaluate, for each array, the probabil-
ity of the associated expression measurement in the array’s context, as speci-
fied by the regression tree. We then multiply the probabilities for the different
arrays, obtaining an overall probability that this gene’s expression profile was
generated by this regulation program. We then select the module whose pro-
gram gives the gene’s expression profile the highest probability and re-assign
the gene to this module. We take care not to assign a regulator gene to a mod-
ule in which it is also a regulatory input, as it is not surprising that a gene can
predict its own gene expression. Overall, each iteration of this procedure
requires computation time that is linear in the size of the expression matrix
(number of genes multiplied by number of experiments).

We initialized our module network procedure with 50 clusters (see our web-
site for rationale on the choice of number of clusters) by using PCluster, a hier-
archical agglomerative clustering (see technical report in our website) and
creating one module from each of the resulting clusters. We then applied the
EM algorithm to this starting point, refining both the gene partition and the
regulatory programs. Our procedure converged after 23 iterations (four tree-
structure-change iterations) to the 50 modules we analyzed, changing the ini-
tial module assignment of 49% of the genes (Supplementary Figs. 4 and 5
online). We note that EM converges only to a local maximum and is sensitive
to its initial starting point. We provide an extensive evaluation of the quality
and sensitivity of our procedure on our website, showing that it leads to a
high-quality local maximum.

Evaluating statistical significance of modules. All of the statistical evalua-
tions were done and visualized in GeneXPress, a cluster analysis and visualiza-
tion tool we developed for this purpose. The tool can evaluate the output of
any clustering program for enrichment of gene annotations and motifs and is
freely available for academic use.

Annotation enrichment. To analyze the biological relevance of a module, we
associated each gene with the processes in which it participates. We removed
all annotations associated with less than five genes from our gene set. This
resulted in a list of 923 GO32 categories, 208 MIPS33 categories and 87 KEGG34

pathways. For each module and for each annotation, we calculated the fraction
of genes in the module associated with that annotation and used the hypergeo-
metric distribution to calculate a P value for this fraction. We carried out a
Bonferroni correction for multiple independent hypotheses and took values of
P < 0.05/n (n = 923, 208 and 87 for GO, MIPS and KEGG annotations, respec-
tively) to be significant for Table 1 and Figure 4.

Promoter analysis. We searched for motifs (represented as position-specific
scoring matrices) within 500 bp upstream of each gene (sequences were
retrieved from SGD29 on 2 July 2002). We downloaded version 6.2 of TRANS-
FAC39, containing 34 known fungi cis-regulatory motifs. We also used a discrim-
inative motif finder12 to search for novel motifs that differentiate each module
from the other genes in the data set and identified 50 potentially novel motifs.
We used the S. cerevisiae GC content as a background distribution, over which we
computed the distribution of motif scores. We selected a threshold so that only
5% of the random sequences pass this threshold and considered the binding site
to be present in the upstream region if it was scored above this threshold.
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Motif combinations. We searched for statistically significant occurrences of
motif pairs. We constructed a motif pair attribute, which assigns a ‘true’ value
for each gene if and only if both motifs of the pair are found in the upstream
region of that gene. For each module and for each motif pair attribute, we cal-
culated the fraction of genes in the module associated with that attribute and
used the hypergeometric distribution to calculate a P value for this fraction as
above. We took values of P < 0.05 (Bonferroni-corrected) to be significant.

Regulator annotation. We associated regulators with annotations and binding
sites in the same way that we associated these attributes with modules. Because
a regulator may regulate more than one module, its targets consist of the union
of the genes in all modules predicted to be regulated by that regulator. We
tested the targets of each regulator for enrichment of the same motifs and gene
annotations as above using the hypergeometric P value. We took values of P <
0.05 (Bonferroni-corrected as for module annotations) to be significant.

Regulator experimental conditions. We associated regulators with experimen-
tal conditions for which they are significantly predictive according to the
inferred modules. Experimental conditions were extracted from the array
labels3. For each occurrence of a regulator as a decision node in a regression tree,
we computed the partition of each experimental condition between the right
branch (the ‘true’ answer to the query on the regulator) and the left branch (the
‘false’ answer) and used the binomial distribution to compute a P value on this
partition. We took values of P < 0.05 to be significant.

Strains and growth conditions. We used the following strains (from
Invitrogen) in this study: DBY8778(BY4741) (genotype MATa ura3∆ leu2∆
his∆1 met15∆1); DBY10058 (DBY8778 ypl230w:KanR); DBY10089 (DBY8778
kin82:KanR); DBY10090 (DBY8778 ppt1:KanR). Unless otherwise mentioned,
cells were grown with shaking (295 r.p.m.) in rich medium (yeast extract/pep-
tone/dextrose; YPD) at 30 °C (normal conditions).

Apart from the stationary phase experiment, we grew cultures to early log
phase (A600 = 0.2–0.4). In all experiments, we used mutant and wild-type
strains carrying the same genetic background and subjected them to the same
procedures. For all experiments, we drew out aliquots of 25–35 ml for extract-
ing total RNA, vacuum-collected cells onto a 45 µm filter (Osmonics), snap-
froze them in liquid nitrogen and kept them at –80 °C until use.

Heat shock. We grew cells at 25 °C, collected them by centrifugation, resus-
pended them in an equal volume of 37 °C medium and returned them to 37 °C
for growth. We collected samples 0, 5, 15, 30 and 60 min after transfer to 37 °C.

Stationary phase. We grew cultures to A600 of 0.27 (Ypl230w mutants) and 0.4
(congenic wild-type; DBY8778) and collected samples (0 h). We also collected
samples at 2 (or 3), 5, 7, 9 and 24 h.

Hypo-osmotic shock. We grew cultures with 1 M sorbitol for ∼ 20 h, collected
cells by centrifugation and resuspended them in YPD. We collected samples 0,
7, 15, 30 and 60 min after transfer to YPD.

RNA preparation and hybridization. We isolated total RNA using the hot
acid phenol method followed by ethanol precipitation2. We extracted
poly(A)+ mRNA, used for all cDNA microarray analyses, from total RNA
using the Oligotex midi kit (Qiagen). We used 1–2 µg for each labeling reac-
tion. We labeled cDNA probes using a 3′ anchored oligo-dT primer, essentially
as described2. We used experimental samples to generate Cy5-labeled cDNA
probes and used mRNA reference pools extracted from cultures of the respec-
tive strains grown to early log phase under normal conditions to generate Cy3-
labeled cDNA probes. We hybridized Cy5- and Cy3-labeled probes together to
microarrays printed with PCR-amplified fragments1 representing 6,280 of the
S. cerevisiae open reading frames.

Data acquisition and analysis. We acquired and analyzed images using the
GenePix 4000 microarray scanner (Axon instruments) and GenePix Pro 3.0,
respectively. Data were subjected to quality-control filters, normalized and
stored in the Stanford Microarray Database.

Raw data files for each array containing all measured values and flags are
also available on our website. In subsequent analyses, we used only those spots

representing successfully amplified genes, with fluorescent intensity in both
channels that was 1.2 times greater than the local background. We selected for
analysis only those open reading frames for which more than 80% of their
spots followed the above rule. We used log-transformed (base 2) ratios for
subsequent analysis.

Verifying chromosomal integrity of deletion strains. For each deletion
strain, we compared the reference RNA pool to that of the congenic wild-
type strain to look for gross chromosomal rearrangements reflected in locus-
associated gene expression biases40. None of the strains used in this study
showed such a bias (data not shown).

Identifying differentially expressed genes in microarray experiments for
putative regulators. We used a paired two-tailed t-test to compare the
expression time series of mutant and wild-type strains. Genes with P < 0.05
from the t-test were considered differentially expressed. Each time series
was zero-transformed to enable comparison of the response to the tested
condition. For Kin82 and Ppt1, we gave all time points as input to the t-test
(5, 15, 30 and 60 min for Kin82; 7, 15, 30 and 60 min for Ppt1). For the
Ypl230w experiment, measuring response during stationary phase, we used
only the late time points (7, 9 and 24 h) as the response to this growth con-
dition starts at this time. To ensure that only genes with large differences are
included, we also required expression to differ by a factor of at least 2 in at
least half the time points compared. The only exception was Ppt1, in which
we required expression to differ by a factor of at least 1.3, because the over-
all signal in these arrays was weaker.

URLs. More details of our results, together with the full raw expression data
obtained from the three different microarray experiments, can be found on
our website (http://dags.stanford.edu/module_nets/). GeneXPress is freely
available for academic use at http://GeneXPress.stanford.edu/. The main yeast
stress data set that we analyzed in the paper can be downloaded from
http://genome-www.stanford.edu/yeast_stress/. A technical report describing
the probabilistic clustering used to initially partition the genes to modules is
available at http://dags.stanford.edu/module_nets/tech.html. A technical
report describing the full details of the module networks method is available at
http://dags.stanford.edu/module_nets/tech.html. All experimental data is
available at the Stanford Microarray Database: http://genome-www5.stanford.
edu/MicroArray/SMD/.

Accession numbers. Expression data for the three different microarray exper-
iments is available at Gene Expression Omnibus41 (accession numbers:
GSE406 for Kin82, GSE407 for Ppt1, GSE408 for Ypl230w).

Note: Supplementary information is available on the Nature Genetics website.
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