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To elucidate gene function on a global scale, we identified pairs of genes that are
coexpressed over 3182DNAmicroarrays fromhumans, flies, worms, and yeast.We
found 22,163 such coexpression relationships, each of which has been conserved
across evolution. This conservation implies that the coexpression of these gene
pairs confers a selective advantage and therefore that these genes are functionally
related. Many of these relationships provide strong evidence for the involvement
of new genes in core biological functions such as the cell cycle, secretion, and
protein expression. We experimentally confirmed the predictions implied by some
of these links and identified cell proliferation functions for several genes. By
assembling these links into a gene-coexpression network, we found several com-
ponents that were animal-specific as well as interrelationships between newly
evolved and ancient modules.

The genome sequences of humans and sev-
eral model organisms have established a
nearly complete list of the genes required to
enact cellular, developmental, and behavioral
processes in these organisms (1–4). The next
major challenges are to elucidate the func-
tions of the large fraction of genes in the
genome whose functions are currently un-
known and to discover how the genes interact
to perform specific biological processes.
DNA microarrays provide us with a first step
toward the goal of uncovering gene function
on a global scale. Because genes that encode
proteins that participate in the same pathway
or are part of the same protein complex are
often coregulated, clusters of genes with re-
lated functions often exhibit expression pat-
terns that are correlated under a large number
of diverse conditions in DNA microarray ex-
periments (5–8).

However, coregulation does not neces-
sarily imply that genes are functionally re-
lated. For example, cis-regulatory DNA
motifs are predicted to occur by chance in
the genome and might lead to serendipitous

transcriptional regulation of nearby genes.
In experiments limited to a single species,
it would be difficult or even impossible to
distinguish accidentally regulated genes
from those that are physiologically impor-
tant. However, evolutionary conservation is
a powerful criterion to identify genes that
are functionally important from a set of
coregulated genes. Coregulation of a pair of
genes over large evolutionary distances im-
plies that the coregulation confers a selec-
tive advantage, most likely because the
genes are functionally related. Because
small and subtle changes in fitness can
confer selective advantage during evolu-

tion, the test for related gene function using
evolutionary conservation in the wild is
more sensitive than scoring the phenotype
resulting from strong loss-of-function mu-
tants in the laboratory.

The recent availability of large sets of
DNA microarray data for humans, flies,
worms, and yeast makes it possible to mea-
sure evolutionarily conserved coexpression
on a genomewide scale (9–11). We devel-
oped a computational method to analyze
3182 DNA microarrays from humans, flies,
worms, and yeast (most of which were pre-
viously published) to identify gene interac-
tions that are evolutionarily conserved.

Construction of a gene-coexpression
network. We selected evolutionarily di-
verse organisms for which extensive microar-
ray data were available: Homo sapiens, Dro-
sophila melanogaster, Caenorhabditis el-
egans, and Saccharomyces cerevisiae. To
identify genes that are coexpressed across
multiple organisms, we first associated genes
from one organism with their orthologous
counterparts in other organisms. We used an
approach similar to previous approaches for
identifying orthologous sets of genes (12,
13). Orthologs were identified by performing
an all-against-all BLAST between every pair
of protein sequences from each of the organ-
isms (14). We then defined a metagene as a
set of genes across multiple organisms whose
protein sequences are one another’s best re-
ciprocal BLAST hit (14). Using this method,
we assigned each gene to at most a single
metagene. For example, metagene MEG273
refers to the human gene Psmd4, the C. el-
egans gene rpn-10, the D. melanogaster gene
Pros54, and the S. cerevisiae gene Rpn10, all
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Fig. 1. (A) Example of a
metagene (MEG273).
An arrow points from
gene X to gene Y if the
protein sequence of Y
had the most signifi-
cant BLAST score to X’s
protein sequence when
compared with all of
the protein sequences
in Y’s database. (B)
Compendiums of microarray expression data from four organisms included in the analysis. Color shows
the type of DNA microarray experiment.
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of which encode a non–adenosine triphos-
phatase subunit of the 19S proteasome cap
(Fig. 1A) (15). In total, this construction re-
sulted in 6307 metagenes, consisting of 6591
human genes, 5180 worm genes, 5802 fly
genes, and 2434 yeast genes (table S1).

We sought to identify pairs of metagenes that
not only were coexpressed in one experiment
and in one organism but that also showed corre-
lation in diverse experiments in multiple organ-
isms. We used data from a diverse set of DNA
microarray experiments that were obtained from
four different organisms: 1202 DNA microar-
rays from humans, 979 from worms, 155 from
flies, and 643 from yeast (Fig. 1B and table S2).
These gene-expression databases contain many
different expression profiles that show how gene
expression is perturbed by developmental stages,
different growth conditions, stress, disease, and
specific mutations. Correlation of expression

profiles for a set of genes across different exper-
imental conditions suggests that the set of genes
are functionally related.

We then identified pairs of genes whose
expression is significantly correlated in multiple
organisms, indicating that their coexpression is
conserved across evolution. We computed the
Pearson correlation of the expression profiles
between every pair of genes in the microarray
data sets for each organism and then ranked all
other genes according to their Pearson correla-
tions. Next, we used a probabilistic method
based on order statistics to evaluate the proba-
bility (P value) of observing a particular con-
figuration of ranks across the different organ-
isms by chance (14, 16, 17).

We used this probabilistic model to define a
gene-coexpression network. We used P � 0.05 as
a cutoff to indicate that two metagenes are coex-
pressed and combined all of the links between

pairs of coexpressed metagenes to construct the
network. The resulting network contained 3416
metagenes connected by 22,163 expression inter-
actions (available on http://cmgm.stanford.edu/
�kimlab/multiplespecies). Under the assump-
tions of the statistical model we used and our
selection criteria (P � .05), we expected only 236
interactions by chance, significantly fewer than
the 22,163 observed interactions.

We verified the significance of the interac-
tions in the network by means of a variety of
statistical tests. First, it was theoretically possible
that the set of metagenes exhibited only a few
simple types of expression patterns, so that even
random pairs of metagenes might appear to have
significant coexpression interactions. To rule out
this possibility, we generated a set of permuted
metagenes, consisting of a random collection of
genes from each organism, and constructed a
network from these permuted metagenes. We

Fig. 2. Statistical validations and comparisons to single-species expression
networks. (A) The number of metagene interactions ( y axis) exceeding a
P-value cutoff (x axis) in networks constructed from real metagenes (blue
curve), a random distribution (red curve), and randomly permuted meta-
genes (green curve). P values are shown in log10 scale. Red arrow marks
P � .05, the cutoff used in the gene-coexpression network. (B) We
randomly divided the databases of each species into two equally sized
sets and then generated new networks derived from each half of the data
for a series of P values. Shown is the percent of metagene pairs with P �
p in the first half that have P � 0.05 in the second half, for each P value
p. P values are shown in logarithmic scale. Three additional randomiza-
tions gave identical results. Red arrow marks P � .05, the cutoff used in

the gene-coexpression network. (C to F) Comparison of multiple-species
and single-species expression networks. We constructed a coexpression
network from each species by selecting a Pearson correlation cutoff and
linking every pair of genes with a correlation higher than the cutoff. We
collected all of the links involving metagenes from a single functional
category from KEGG (22). We then calculated the percentage of links
connecting two members of the category ( y axis; accuracy) and plotted
this against the percentage of metagenes that are connected to at least
one other metagene in the category (x axis; coverage). We varied the
Pearson cutoff for constructing single-species networks and varied the
P-value cutoff for constructing multiple-species networks to obtain
different accuracies and coverages.
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compared the number of interactions in the ran-
dom network with the real network for a wide
range of P values (Fig. 2A). We repeated this
procedure five times with different random per-
mutations of orthologs. For each permutation
and for every P value, we found significantly
more links in the real network than the random
network; for example, at P � 0.05, the real
networks contained 3.5 � 0.03 times as many
interactions as the random networks contained.

Second, we wanted to evaluate whether a
large fraction of potential gene interactions was
represented by the available microarray experi-
ments. The current microarray experiments
might reveal only a small fraction of possible
gene interactions, and so the particular set of
gene interactions found in each organism would
be heavily dependent on the specific set of mi-
croarray experiments that we conducted. Alter-
natively, the microarray experiments might be
broad and diverse, revealing a large fraction of
possible gene-expression interactions. In this
case, the coexpression relationships in the net-
work would be robust to the choice of microar-
ray experiments; for example, a significant frac-
tion of the gene-expression links should be
present in networks built with only a random half
of the data. We randomly split the DNA mi-
croarray data in each organism’s data set into
two halves and then built two coexpression net-
works, each with only half of the data. We then
counted the fraction of interactions that were
significant in one network (P � 0.05), given that
they were significant in the other network at P �
p for various values of p. We repeated this entire
procedure five times. At P � 0.05, we found

that 41% of the significant expression interac-
tions in one network were also significant in
the other network. These results indicate that
the microarray experiments are reasonably
broad and diverse, revealing a general set of
gene interactions (Fig. 2B).

Finally, because gene-expression mea-
surements contain some inherent variability,
we tested whether the network was stable
with respect to added noise. For example, C.
elegans DNA microarray experiments typi-
cally vary by a SD of 0.3 to 0.5 (log2 expres-
sion ratios) (18, 19). We added increasing
levels of Gaussian noise to the entire data set
for each of the organisms and constructed
new networks from the perturbed data. Net-
works constructed following the addition of
realistic levels of noise were very similar to
the network from the original data (fig. S1).

Biological function of conserved gene-
expression links. The multiple-species
gene-coexpression network differs from pre-
vious gene-expression compendiums (such as
the yeast compendium and the worm gene-
expression terrain map) (6, 7) in two major
ways: (i) the multiple-species network only
maps those genes that have orthologs in other
species and thus focuses strongly on core,
conserved biological processes; (ii) interac-
tions in the multiple-species network imply a
functional relationship based on evolutionary
conservation, whereas interactions using data
from single species only indicate correlated
gene expression.

We next visualized the interconnectivity
of the network in order to gain insights into

the evolutionarily conserved patterns of ex-
pression and the coregulation architecture
common to all four organisms. We chose to
view the network as a terrain map with a
three-dimensional (3D) layout program
called VxInsight (20). In this visualization,
metagenes are placed near each other in the
x-y plane according to the negative loga-
rithm of their P value, and the density of
genes in a region is shown by the altitude in
the z direction (Fig. 3). Using VxInsight,
one can find highly interconnected areas of
the network as peaks in the map as well as
specific gene-gene interactions. The net-
work and the VxInsight application are
available on http://cmgm.stanford.edu/�
kimlab/multiplespecies.

Each link in the terrain map suggests a
potential interaction between two genes that
has been conserved across evolution, and is
therefore likely to be functionally related. We
used K-means clustering on the x-y coordi-
nates to define 12 regions of the terrain map
that contain a large number of highly inter-
connected metagenes, and we refer to these
regions as components (14). Most of the
components were enriched for metagenes in-
volved in similar biological processes, such
as protein degradation, ribosomal function,
cell cycle, metabolic pathways, and neuronal
processes (Fig. 3 and Table 1).

Component 5 is an example of a group
that is strongly enriched for metagenes in-
volved in a common biological process. This
component contains a total of 241 metagenes,
110 of which were previously known to be
involved in the cell cycle (out of a total of
202 cell cycle metagenes in the network; 7.7
times as many as were expected using the
hypergeometric distribution, P � 10�85)
(Table 1). Of the cell cycle metagenes, 30 are
involved in regulating the cell cycle, such as
MEG2742 (encodes cyclin E) and MEG5621
(encodes Wee1), along with 80 that perform
terminal cell cycle functions, such as
MEG1092 (encodes DNA polymerase-�).
The remaining 131 genes were not previously
known to be involved in the cell cycle, and so
linking these genes to known cell cycle met-
agenes in the coexpression network suggests
new cell cycle functions for these genes.

If a gene is linked in the network to many
genes that participate in the same biological pro-
cess, it is reasonable to hypothesize that it also
participates in that process. We experimentally
validated some of the gene functions that were
predicted by the multiple-species network. We
selected five metagenes that showed conserved
coexpression with genes known to be involved
in cell proliferation and the cell cycle but that
were not previously known to be involved in
these processes. Specifically, we chose
MEG1503 (which encodes an snRNP protein
involved in splicing), MEG342 (which encodes
a nucleoporin-interacting component), and three

Fig. 3. The negative
logarithm of the P val-
ues computed for con-
served coexpression
links were used to po-
sition the metagenes
on a 2D grid using Vx-
Insight’s ordination
tool (20). Metagenes
with smaller P values
(indicating a higher
significance of con-
served coexpression)
were placed close to
each other, whereas
metagenes with larger
P values were placed
farther apart. The alti-
tude in the final visu-
alization indicates the
local density of genes.
The bottom panel
shows the 3D repre-
sentation for 3416
metagenes. Twelve
components of highly
interconnected meta-
genes are shown along
with the main biolog-
ical functions for
which they were enriched. The entire data set can be queried for individual genes using VxInsight,
which can be downloaded from http://cmgm.stanford.edu/�kimlab/multiplespecies.
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other metagenes (MEG4513, MEG1192, and
MEG1146) that encode previously unknown
proteins of unknown function (table S1). All five
of these metagenes showed a significant number
of links in the coexpression networks to known
cell proliferation genes (table S3).

We first tested the expression levels of
these genes in dividing pancreatic cancer
cells and in nondividing normal cells, using
recently published data from Iacobuzio-
Donahue et al. (21). (These data were not
used to construct the gene-coexpression net-
work.) Figure 4A shows that all five genes
are overexpressed in human pancreatic can-
cers relative to normal tissue, to the same
extent as genes known to be involved in cell
proliferation. In our second experiment, we
tested the loss-of-function mutant phenotype
for one of these metagenes, MEG1503, which
includes the C. elegans gene ZK652.1. We
induced a loss-of-function mutant phenotype
for ZK652.1 by feeding worms double-

stranded ZK652.1 RNA. We found that RNA
interference (RNAi) of ZK652.1 resulted in
excess nuclei in the germ line, suggesting that
the wild-type function of this gene is to sup-
press germline proliferation (Fig. 4B). To-
gether, these experiments provide validation
for the functional characterization of these
genes in two different organisms.

The function of these five genes was
much clearer in the multiple-species–coex-
pression network than it was in a network
constructed with data from only a single or-
ganism. For each gene, we constructed an
organism-specific neighborhood, which con-
sisted of the genes that are most coexpressed
with the given gene in that organism. On
average, the neighborhoods of these five
genes were over four times more enriched for
cell proliferation and cell cycle genes in the
multiple-species network than they were in
the best single-species neighborhood (table
S4). This observation supports our hypothesis

that the multiple-species network tends to
retain coexpression links between functional-
ly related metagenes, whereas it discards spu-
rious gene-expression links.

We evaluated this hypothesis on a more
global scale by comparing the ability of the
multiple-species and single-species networks to
link together genes that were previously known
to be involved in a single function, excluding
genes not known to participate in that function.
For most functional categories [as defined by
the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) database] (22), the multiple-
species network performed significantly better
than the single-species networks. In the case of
the cell cycle function, for example, the multi-
ple-species network performed significantly
better than any of the networks that were
formed using a single species (Fig. 2C). Spe-
cifically, for a given P-value cutoff, the multi-
ple-species network had a higher percentage of
cell cycle genes linked to one another ( y axis;

Fig. 4. (A) MEG1503, MEG342, MEG4513,
MEG1192, and MEG1146 are overexpressed in pan-
creatic cancers. We plotted the metagenes with the
GeneXPress program (http://genexpress.stanford.
edu) using data from (21). The first five columns
correspond to expression data obtained from normal
pancreas specimens (pSF2779N, pSF442N, pSF4N,
pSF5NT, and pSF768NT), and the remaining eight
columns correspond to expression data obtained
from pancreatic cancer specimens [a pancreatic can-
cer cell line (HS766T ), five Hopkins/Goggins pancre-
atic cancer cell cultures (PL2, PL22, PL21, PL1, and
PL8), a poorly differentiated pancreas carcinoma
(pSF439T), and a pancreas foamy cell adenocarcino-
ma specimen (pSF1T )]. Each row corresponds to the
expression profile of a singlemetagene across the 13
pancreatic samples. Bold indicates metagenes with
unknown functions that are implicated in cell prolif-
eration by the network. Neighbors of each implicat-

ed metagene that were previously known to be involved in cell proliferation or cell cycle are also shown. Scale shows log2 expression ratio. (B) RNAi-induced
phenotype of ZK652.1. Shown are wild-type gonads and gonads fromworms that were fed bacteria producing ZK652.1 double-stranded RNA for 2 days (29). Gonads
were stainedwith 4�,6�-diamidino-2-phenylindole to showDNA in the nuclei (30). ZK652.1 (RNAi) gonads havemore nuclei than thewild type and lack oocytes (ooc.).
rrf-3(pk1426) worms were used because they are more sensitive to RNAi (31).
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accuracy) for any given percentage of total cell
cycle genes that are linked (x axis; coverage).
Genes involved in proteasome function and
genes involved in oxidative phosphorylation
were also clustered more tightly and more ex-
clusively by the multiple-species network com-
pared with those in any of the single-species
networks (Fig. 2C).

For some categories (such as genes in-
volved in ribosomal function), the best net-
work constructed with data from a single
organism (such as using only yeast or worm
microarray data) was about equal in quality to
the network generated using multiple species
(Fig. 2C), but the networks in other organ-
isms performed much more poorly.

One possible explanation for the superior
performance of the multiple-species network
is the trivial fact that the multiple-species
network was built from more DNA micro-
array data. To rule out this possibility, we
repeated the functional prediction analysis
with a multiple-species network formed from
only 979 DNA microarrays (the same number
as in the worm data set). We found that the
network built from fewer microarrays per-
formed as well as the network built from all
of the microarrays in terms of predicting gene
functional categories (fig. S2). Thus, we be-
lieve that the multiple-species network pro-
vides better functional predictions because it
uses evolution to filter out gene interactions
that are not functionally relevant.

The multiple-species network contains 570

metagenes that encode proteins of unknown
function (orthologs that are conserved across
evolution but whose function is poorly under-
stood in any organism) (table S1). These meta-
genes have a total of 3943 connections to other
metagenes in the network (many of which have
known functions), potentially allowing these
metagenes to be characterized.

Conservation and interaction of genet-
ic modules. In addition to learning about the
function of individual genes, one can use the
network to analyze entire sets of genes to
understand the system as a whole. Consider
three types of genetic modules: (i) ancient,
dedicated modules, (ii) evolving modules,
and (iii) modules with interchangeable parts.
Ancient modules, such as the group of meta-
genes involved in ribosomal function, have a
main core cellular function that has been
conserved from yeast to humans. Metagenes
in these modules would be expected to have
highly conserved coding regions and to con-
tain gene-expression links that are conserved.
Evolving modules, such as those modules
involved in neuronal function, show rapid
change among the four species. Metagenes in
this type of module are expected to lack a
yeast ortholog and to show relatively large
changes in expression links between inverte-
brates and humans. Modules with inter-
changeable parts are composed of metagenes
that have different links in different species.
For example, sir-2 encodes a protein that is
highly conserved from yeast to humans and is

involved in regulating chromatin structure
and gene expression, but it has different
downstream targets in each species (23). Oth-
er types of metagenes with adaptable, inter-
changeable functions would include those en-
coding transcription factors, signaling mole-
cules, and adaptor proteins. These metagenes
have coding sequences that are conserved but
are likely to have different sets of gene-
expression links in each species.

We tested the extent to which different
modules are present in our gene-coexpres-
sion network. We split the set of metagenes
into a set of 2969 metagenes that contained
a yeast ortholog and a set of 3338 meta-
genes that were animal-specific in that they
included genes from worms, flies, or hu-
mans but not yeast. Next, we determined
the degree to which the gene-expression
links have been conserved for each meta-
gene by defining a set theoretic quantity
called the expression-conservation index
(ECI), in which larger values indicate
stronger conservation (14 ).

We examined the degree of conservation
of the different biological functions repre-
sented by the 12 main components in the
gene-coexpression network (Fig. 5). Compo-
nents 1, 7, and 11 were the most enriched for
animal-specific metagenes and also showed
the lowest degree of evolutionary conserva-
tion of their gene-expression links (ECIs of
0.67, 0.56, and 0.61, respectively) (Table 1
and Fig. 5). Component 1 was enriched for
metagenes that were involved in signaling
pathways, consistent with the idea that sig-
naling pathways are animal-specific and reg-
ulate diverse sets of downstream genes in
different organisms. Component 11 was en-
riched for metagenes involved in neuronal
function, consistent with the idea that neuro-
nal functions show large amounts of evolu-
tionary change. Component 7 has yet to be
correlated with any biological function. Nev-
ertheless, the low conservation of both the
coding region and gene interactions for this
component suggests that it may be involved
in processes that are evolving. In contrast to
components 1, 7, and 11, component 9 is the
least enriched for animal-specific metagenes
and shows the highest degree of evolutionary
conservation (2.4 average conservation de-
gree), consistent with the known biological
function associated with this component (ri-
bosomal function).

We used the network to investigate the in-
terconnections between multicellular and core
cell-biological processes, and found several ex-
amples of processes that were intertwined.
Component 3 is enriched for metagenes in-
volved in metabolic pathways, particularly
those used to generate energy such as the gly-
colytic pathway and the tricarboxylic acid cycle
(Table 1). Within component 3, there is a small
cluster of 76 metagenes that is enriched for

Fig. 5. (A) Conserva-
tion of components in
the multiple-species
network. Each box in
the heat map repre-
sents the percentage of
links connected to a
metagene in one or-
ganism that are also
present in the multiple-
species– coexpression
network (see table S5
for the computed con-
servation levels). Gray
indicates that a met-
agene lacked an or-
tholog in a particular
organism. The columns
correspond to flies, hu-
mans, worms, and
yeast, respectively. The
final column shows the
expression conserva-
tion index for a single
metagene (14). The av-
erage conservation de-
gree for all metagenes
in the component is
shown beneath the
component’s heat map.
Scale shows the con-
servation degree. (B)
Component 11 is composed primarily of animal-specific metagenes (yellow boxes), and component 9
is composed primarily of metagenes containing a yeast ortholog (blue boxes).
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animal-specific metagenes (1.5 times more en-
riched; P � 10�4) and metagenes with a low
conservation degree of gene-expression links.
Of the 48 animal-specific metagenes, 4 are
involved in muscle function (10 times more
enriched; P � 10�4.6), which is consistent with
the very high energy demands of muscle. Com-
ponent 4 is enriched for metagenes involved in
protein degradation, such as metagenes that
encode proteasomal subunits (such as
MEG1013) or ubiquitin ligases (such as
MEG1233) (Table 1). Within this component,
there is a cluster of 92 metagenes that are
animal-specific. Within this animal-specific
portion, three metagenes are involved in ap-
optosis (2.1 times more enriched; P �
10�1.3), indicating a functional link between
a core cell-biological process (protein degra-
dation) and an animal-specific process (pro-
grammed cell death).

Connectivity properties of genetic
networks. Some biological functions require

the coordinated effort of a large number of
genes. For example, many protein subunits are
required for the ribosome to synthesize new
polypeptide links, and many enzymes are re-
quired to generate energy in the glycosylation
pathway. Other biological functions may be
comprised of genes that either act alone or that
have multiple sets of interaction partners. For
example, transcription factor genes act with
different regulators to regulate different down-
stream targets depending on cell context; they
thus appear as isolated metagenes in the gene-
coexpression network, because they do not
have a consistent group of interacting partners.
The network of genetic pathways that comprise
an organism will be composed of some path-
ways that are designed to be large and others
that are engineered to be small.

To characterize the connectivity properties
of the gene-coexpression network, we counted
the number of neighbors for each metagene in
the network and compared this with neighbor-

hood sizes arising from networks constructed
from permuted data (Fig. 6) (14). We found
that the distribution of gene-expression links in
the gene-coexpression network was highly non-
random, containing significantly more meta-
genes with a larger number of gene-expression
links than the control networks. For example,
there were 1290 metagenes with 10 or more
links compared with only 168.3 � 11.1 such
links in the control networks.

The connectivity of the network follows a
power-law distribution (Fig. 3; linear regres-
sion to log-log plot explains 92% of the
variation) (24). This power-law function has
been observed in other analogous natural and
social phenomena (such as the distribution of
U.S. firm sizes or the neighborhood sizes in
the World Wide Web) and also in biological
networks (such as protein-protein interaction)
(25–28). This result suggests the existence of
a selective force in the overall design of
genetic pathways to maintain a highly con-
nected class of genes.
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Fig. 6. Distribution of the number of
links for each metagene. Shown is the
number of links (x axis, log10 scale)
compared with the number of meta-
genes that have that number of links
( y axis, log10 scale) in the network
(blue triangles) and in the networks
constructed from permuted data
(green squares) (14). The black line
(slope of –1.51) depicts the least-
squares fit of the data to a linear line
in the log-log plot.

Table 1. Network components.

Component Size* Biological function† Genes in component‡ Enrichment; P value§

1 353 Cellular cortex 16/57 2.7; 10�6.1

Signaling 44/321 1.3; 10�5.8

Animal-specific 195/1441 1.3; 10�7.2

2 349 Ribosome biogenesis 102/125 8.0; 10�83

3 320 Energy generation 77/147 5.6; 10�42

4 271 Proteasome 31/32 12; 10�32

5 241 Cell cycle 110/202 7.7; 10�85

6 201 General transcription 47/142 5.6; 10�24

7 167 Animal-specific 124/1441 1.8; 10�17

8 156 Translation initiation,
elongation, and termination

20/110 4.0; 10�7.3

Aminoacyl transfer
RNA biosynthesis

14/31 9.9; 10�11

9 139 Ribosomal protein subunits 74/78 23; 10�107

10 92 Secretion 37/85 16; 10�38

11 65 Neuronal 17/42 21; 10�19

Animal-specific 58/1441 2.1; 10�15

12 57 Lipid metabolism 6/16 22; 10�7

Peroxisome 14/32 26; 10�17

*The total number of metagenes in the component. †Biological functions were based on edited terms from Gene
Ontology (15) and the KEGG database (22). ‡The number of metagenes in the biological function group and in the
component divided by the total number of metagenes in the biological function group that were also in the network.
§The ratio between the number of observed metagenes in a category and the number expected by chance. The P value
was computed as the probability of obtaining the observed number of overlaps by chance under a hypergeometric
distribution.
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Control Mechanism of the
Circadian Clock for Timing of

Cell Division in Vivo
Takuya Matsuo,1,2* Shun Yamaguchi,1* Shigeru Mitsui,1

Aki Emi,1 Fukuko Shimoda,1 Hitoshi Okamura1†

Cell division in many mammalian tissues is associated with specific times
of day, but just how the circadian clock controls this timing has not been
clear. Here, we show in the regenerating liver (of mice) that the circadian
clock controls the expression of cell cycle–related genes that in turn mod-
ulate the expression of active Cyclin B1-Cdc2 kinase, a key regulator of
mitosis. Among these genes, expression of wee1 was directly regulated by
the molecular components of the circadian clockwork. In contrast, the
circadian clockwork oscillated independently of the cell cycle in single cells.
Thus, the intracellular circadian clockwork can control the cell-division cycle
directly and unidirectionally in proliferating cells.

Circadian (�24-hour) rhythms and cell divi-
sion are fundamental biological systems in
most organisms. There is substantial evi-
dence that, in mammals, circadian rhythms
affect the timing of cell divisions in vivo.
Day-night variations in both the mitotic index
and DNA synthesis occur in many tissues
(e.g., oral mucosa, tongue keratinocytes, in-
testinal epithelium, skin, and bone marrow)
(1–6), some of which persist even in constant
darkness (7). However, how the circadian
clock controls the timing of cell divisions is
not known.

To explore the relationship between cell
division and circadian rhythms, we used a
mouse model with partial hepatectomy (PH)
(8–13). After a two-thirds partial hepatecto-
my (14), most of the remaining hepatocytes
rapidly and simultaneously enter into the cell
cycle, resulting in restoration of the liver
mass in a few days.

Diurnal control of cell cycle in wild-
type mice. PH was performed on mice (15) at
ZT8 or ZT0 (ZT, Zeitgeber time in a 12 hour
light–12 hour dark cycle; ZT0 represents lights
on and ZT12, lights off ) to compare the kinetics
of subsequent cell cycles. The kinetics of S-
phase (DNA-synthesizing) hepatocytes for both

ZTs were comparable as determined by bro-
modeoxyuridine (BrdU) incorporation into nu-
clei, peaking at 36 hours after PH (Fig. 1A). In
contrast, subsequent mitotic waves differed
(Fig. 1B). When PH was performed at ZT8
(PH/ZT8), a massive entry of hepatocytes into
the M phase occurred within 40 hours after PH.
In the case of PH/ZT0, however, only a few
cells entered the M phase within 44 hours, and
a mitotic peak was reached 48 hours after PH.
These results suggest that the time of operation
has a marked effect on the timing of mitosis
controlling the progression of cell cycling itself.

To investigate the molecular mechanism
underlying this time of day–dependent regu-
lation of the cell cycle, we examined the
kinase activity of Cdc2 (15), an initiator of
mitosis (16). Peaks of Cdc2 activity after
PH/ZT8 and PH/ZT0 occurred 40 and 48
hours after PH, respectively, corresponding
to the observed mitotic peaks (Fig. 1, B and
C). This suggests that the regulation of the
expression of the active Cdc2 kinase is an
important process for the diurnal control of
the cell cycle.

Analysis of the expression profiles of 68
cell cycle–related genes by DNA microarray
and Northern blot analysis (fig. S1, A and B;
fig. S2; and table S1) revealed that although
11 genes showed moderately different kinet-
ics between PH/ZT8 and PH/ZT0 (differenc-
es of 1.5- to 2.2-fold or 0.67- to 0.42-fold;
ratios of PH/ZT0 to PH/ZT8) (fig. S2 and
table S2), only three genes—cyclin B1, cdc2,
and wee1—showed remarkably different ex-
pression profiles (a difference of more than

2.7-fold) between 28 and 56 hours after PH
(Fig. 1D).

The expression peaks of cyclin B1 and
cdc2 transcripts, whose products form Cyclin
B1-Cdc2-complex kinase, corresponded with
Cdc2 kinase activity peaks (Fig. 1, C and D).
Both mRNA peaks were delayed by 8 to 12
hours after PH/ZT0 as compared to PH/ZT8.
The wee1 gene product phosphorylates Cdc2
on Tyr-15 [p-Cdc2(Tyr 15)] and keeps it in
an inactive form (17, 18); the decrease of its
mRNA corresponded with the increase of the
Cdc2 kinase activity (Fig. 1, C and D) with
the same time delay. These results suggest
that the transcript-level regulation of cyclin
B1, cdc2, and wee1 contributes to the timing
of entry into mitosis.

Impaired liver regeneration in arrhyth-
mic Cry-deficient mice. Mice that lack the
clock regulator cryptochromes (Crys) com-
pletely lack free-running rhythmicity. Yet,
embryogenesis and postnatal development in
these mice appear normal (19), suggesting
that clock function is not absolutely required
for cell cycling. Although the mean weights
of the pre-PH livers of wild-type and Cry-
deficient animals were the same (P � 0.05),
the weights of the regenerating livers in Cry-
deficient mice 72 hours after PH/ZT8 were
significantly lower than those of wild-type
mice (53.1 � 3.0% and 64.1 � 1.7% of
pre-PH liver weight, respectively; Student’s t
test, P � 0.05) (Fig. 2A). This value for
Cry-deficient mice was also lower than that
of wild-type mice 72 hours after PH/ZT0
(66.4 � 1.7%; P � 0.01), suggesting impair-
ment of hepatocyte proliferation in Cry-
deficient mice. However, in both genotypes,
liver weight returned to pre-PH levels by day
10 (Fig. 2A), and histological analyses (in-
cluding comparisons of the number and cell
size of hepatocytes and average distances
separating portal and central hepatic veins),
did not reveal any major differences (20).
This indicates that circadian clock function is
required for efficient cell cycling in vivo.

The kinetics of S-phase hepatocytes af-
ter PH/ZT8 or PH/ZT0 in Cry-deficient and
wild-type mice were comparable (Fig. 2B).
However, in the subsequent mitotic wave,
the maximum value of mitotic hepatocytes
was low (less than 4% for both PH/ZT8 and
PH/ZT0) (Fig. 2B). Furthermore, Cdc2 ki-
nase activity was reduced (Figs. 2B and
1C). Therefore, the cell cycle progression
from S to M phase was impaired during
liver regeneration in Cry-deficient mice. In
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