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Importance of Matching

Object recognition represents one of the 
primary goals of computer vision.
Matching procedure is an important 
component of object recognition. 
Although some success has been achieved in 
solving the problem of exemplar-based 
recognition, we’re a long way from solving the 
problem of categorical perception.

Matching Problem
General problem:
“Given two objects A and B, we want to know how 

much they resemble each other”

In certain settings:
One of the objects may undergo certain 
transformations like translations, rotations or scaling.

Variations:
A exactly resembles B.
A resembles only to some part of B.

A simplified version A’ of A matches B. 

Example:
Objects: 

Finite sets of points (“point patterns”)

Resemblance:
Various distance functions, e.g. Hausdorff distance:

Transformation (application dependent):
Rigid motions: translation, rotation.

Affine: rigid + scaling.
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Simple Algorithm for Point Matching

Given: 2 finite sets A, B of n points in R2.
Question: are A and B congruent?
Algorithm:

1. Determine the centroids cA, cB of sets A and B.
2. Determine the polar coordinates (φ1, r1), (φ2, r2),…, (φn, rn) of 

all points in A using the centeroid as the origin, and compute 
the sequence  SA={(γ1, r1), (γ2, r2),…, (γn, rn)}, where γi=φi-φi+1 

mod n.
3. Compute in the same way the corresponding sequence SB for 

B.
4. Determine whether SB is a cyclic shift of SA, i.e. a substring of 

SA ||SA using a fast string matching algorithm.

Observe that

The problem gets more and more complicated as:
Size: Number of points in A and B are not the 
same.
Features: There is additional information 
associated with each point (in addition to its 
Euclidean coordinates) in A and B.
Dimensions: Objects A and B are in spaces of 
different dimensionality.
Objects A and B are not geometric!

Hardness of Categorical Perception

Categorization requires extracting more 
abstract (i.e., within-class invariant) 
features and relations from an image.
What if we could extract such 
abstractions? 

Is there a general framework that would 
allow us to match (recognize) them?

Graph Abstractions and Recognition

Graphs provide a powerful 
representational tool for image 
abstraction, in which:

nodes represent image features, and 
edges represent relations between features.

Matching two objects can be formulated 
as matching their respective graph 
representations.
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Example 1: Generic 2-D Shape 
Matching using Silhouettes

Shock Graph (Siddiqi et. al.  1999)

Example:

Illustrative Example Computed Correspondence
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Find Similar
Objects

(quickly!)

Select Best 
CandidateCandidate 

Objects 
(few!)

Object Database

Query Response

Where is the Community?

Combinatorial methods:
bipartite matching, tree edit-distance

Continuous optimization methods 
maximum clique, graduated assignment

Algebraic methods 
spectral methods, matrix/probabilistic methods

Embedding methods 
spectral embedding, tree embedding

Boundaries are blurred - lots of overlap!

Weighted Bipartite Matching

Known also as assignment problem.
Given: a bipartite graph G(A,B,E) with weight function w(e) 
for every e in E.

A B
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Weighted Bipartite Matching

Find: a matching between A and B with 
greatest total weight.

Note:  we may assume G is a complete 
bipartite graph, with |A|=|B|. 

A B
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Current Results:
Bipartite Cardinality Matching:

O(n1/2 m) time. Max-flow on unit capacity networks. [Even-
Tarjan]

Non-Bipartite Cardinality Matching:
First polynomial time, O(n4), algorithm in 1957 by Edmonds.
Current best O(n1/2m) [Micali-Vazirani].

Bipartite Weighted Matching:
O(nm + n2 log n) strongly poly.
O(n1/2 m log (nC)) scaling algorithm.

Non-Bipartite Weighted Matching:
O(n3) by [Edmonds & Gabow].
Current best O(n m + n2 log n).

Where n=|V|, m=|E|, C=max w(e).

Application: Bipartite Matching

Title: View-Based Object Recognition Using Saliency 
Maps

Authors: Marsic, et. al. 

Publication: Image and Vision Computing, Vol. 17

Year: 1999

URL: 
http://www.cs.toronto.edu/~sven/Papers/ivc99.ps.gz

A Coarse-to-Fine Image Representation 
(Marsic ’93):

Choosing the Characteristic Scale for an 
Object
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Detecting Peaks at a Given Scale

In 2-D, a set of directional 1-D filters (one of which is shown 
above) are applied to the image at each position at each scale. 
Sufficiently large response clusters in a bottom-up search 
indicate characteristic object scales. 

Invariance of the Representation

Illumination Invariance

1513

25 50
candles per 
square foot

An Algorithm for Topological 
Matching

Adopt a coarse-to-fine solution based on a multilevel 
bipartite graph matching formulation.

Two nodes are considered for correspondence if they 
have no parents at a higher level, or each has a parent at 
the same level and these parents belong to the matching 
at that level.
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Unoccluded Queries Results

Match           to all other images. Neighbouring pig 
views were two closest views.

43.8346.3012.278.91Geo

23.2514.5810.069.57Topo
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Limitations
Representation:

Limitations

Matching:

• not invariant to vertical 
compression/expansion of graphs.

• background objects cannot be dominant in 
the scene.

What is Edit Distance:
The smallest number of changes (e.g. 
insertions, deletions, and substitutions) 
required to change one structure into another. 
It is also referred to as Levenshtein distance. 
Widely used in string matching:

The edit distance between two strings is defined 
by the number of primitive operations (insert, 
delete, replace) necessary to transform one string 
to the other. 

Example:

What is the edit distance between “survey” and 
“surgery”?

S U R V E Y

S U R G E Y

S U R G E R Y

Replace (+1)

Insert (+1)

Edit Cost (+2)
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Cost of Edit Operations:

In the general version of edit distance, different 
operations may have different costs, or the costs 
depend on the characters involved.
For example, replacement could be more 
expensive than insertion, or replacing “a” with “o” 
could be less expensive than replacing “a” with “k”.
The general edit distance does not satisfy the 
triangular inequality and thus it is not a metric. 

Dynamic Programming algorithm 

Problem: find the edit distance between strings X
and Y.
Create an (|X|+1)×(|Y|+1) matrix C, where Ci,j
represents the minimum number of operations to 
match X[1…i] with Y[1…j]. 
The matrix is constructed as follows:

Ci,0 =i.
C0,j =j.
Ci,j will be set to

Ci-1,j-1   if X[i]=Y[j] 
1+min(Ci-1,j ,Ci,j-1 ,Ci-1,j-1 )   otherwise.

Tree Edit Distance
Tree edit distance:

the minimum cost to transform one tree into another 
by elementary operations. 

Let A and B be ordered trees. We assume 
The edges are labeled; node labels can be handled 
similarly.
Two kinds of elementary operations are allowed: label 
modification and edge contraction, with nonnegative 
costs. 

Goal: find a minimum-cost set of operations to perform 
on A and B to turn them into the same tree.

Example:

h

g
a

d b

c

e

f

u

z

y x v

w

h

a
c

e

f

Contract edges 
g, d, and b

u

z
y

v
w

Contract edge x

Change labels 
u, z, y, w, v

to
f, e, c, a,h
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Rooted Trees

We will consider the problem of rooted 
ordered tree edit-distance. 
Given: two rooted trees A and B where 
each node’s children are ordered left to 
right. 
Find: a minimum edit-distance 
(weighted sequence of edit operations) 
between A and B. 

Euler String of a Tree:

Given an ordered, rooted tree T, 
replace each edge (x,y) by two 
oppositely directed arcs (x,y) and (y,x).
The depth-first search traversal of T
defines an Euler tour of the darts of 
T. 
We interpret the tour as a string, the 
Euler string of T , denoted by E(T).
The first dart of the string goes from 
the root to the leftmost child of the root. 

a

b c

d

e f

g

Euler String
abb’cc’a’dee’ff’d’gg’

Operations:

Relation between tree and string edit 
operations:

Contracting an edge in one tree corresponds to 
deleting a pair of paired parentheses in the 
corresponding string. 
Matching an edge in one tree to an edge in the 
other corresponds to matching the pairs of 
parentheses and then matching up what is inside 
one pair against what is inside the other pair. 

Current Results:

The running time of previous algorithm 
is  O(n4).

Klein improved this to O(n3 log n) for 
unordered trees through path 
decomposition and collapsing of trees.
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Application: Graph Edit Distance

Title: Recognition of Shapes by Editing Shock Graphs

Authors: Sebastian, Klein, and Kimia

Publication: Proceedings, ICCV 2001

Year: 2001

URL: 
http://www.lems.brown.edu/vision/publications/conferen
ce/SebastianICCV01.ps.gz

Ali Shokoufandeh gratefully acknowledge Thomas Sebastian and 
Ben Kimia for their contribution of materials to this talk.

Shock Graph Representation of 
Shape
• Shocks (or medial axis or skeleton) are locus of centers 

of maximal circles that are bitangent to shape boundary

Shocks Real Example

Shape boundary

Edit-Distance for Shock Graphs
• Four edit operations are needed for shock graphs

– Splice: deletes a shock branch (leaf) and merges the 
remaining two

– Contract: deletes a shock branch between two 
degree-three nodes – Deform: changes the attributes of a shock branch

– Merge: combines two branches at a degree-two node 
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Edit Cost
• Edit cost is limit of deform cost:

– for splice, cost of deforming protrusion to circular arc 
(see below)

– for contract, cost of deforming edge to a point

– for merge, topology is unaffected, so cost reduces to 
deformation cost.

Edit-Distance Between Shapes
• Edit-distance is defined as the sum of the cost of edits in 

optimal edit sequence

Matching Examples

Edit-distance 
algorithm gives 
intuitive results

Note that same 
colors indicate 
matching edges; 
gray-colored 
edges are pruned

Boundary Noise
• Shock graphs are sensitive to boundary noise

In optimal edit sequence, “noisy” branches are pruned
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Viewpoint Variation

• Deform edit 
handles 
smooth 
changes

• Splice and 
contract edits 
handle 
abrupt 
changes

Smooth change

Abrupt change

Partial Occlusion
Edit-distance is 
robust to partial 
occlusion

Generic Recognition

* Results 
duplicated in 
two databases: 
99 shapes and 
216 shapes

Edit-distance 
algorithm 
allows 100% 
shape 
recognition 
between 
different shape 
categories

Conclusions

• Novel application of graph edit distance to yield an elegant 
shape matching framework using shock graphs.

• Handles graph regularization within the matching algorithm, 
making it applicable to a wide variety of domains.

• Both discrete (graph) and continuous (curve) deformation 
costs are mapped to a continuous curve deformation cost, 
providing a metric.

• Outstanding results, reflecting strong invariant properties.
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Distance Matrix between Objects:

Assume we are given two 
objects A={a1,…,am} and 
B={b1,…,bn} and a distance 
matrix that represents the 
similarity between any two 
objects in A and B.
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
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Distance between ai and bj

Without loss of generality we may assume:
|A |=|B|.  

Dij ≥ 0 and Dii = 0.

Dij=Dji..
D is a symmetric nonnegative definite matrix. 

Stochastic Matrices:
A permutation matrix has all entries equal 
zero except one entry 1 in each row and each 
column.
Equivalently, it is a matrix defined by a 
permutation σ ∈ Sn as

Pσ =(δσ (j),j)

A doubly stochastic matrix is a nonnegative 
matrix whose rows and columns each add up 
to 1:

∑∑ ==≥
i

ij
j

ijij aaa .1,1,0

Matrix Scaling Problem:

An n×n matrix A is said to be scalable if there exist two 
diagonal matrices X and Y such that XAY is double 
stochastic.
The scaling problem is to determine the scalability of a 
given matrix, and to find the scaling factors. 
Algebraically, the problem can be stated as the system  
of nonlinear equations in positive variables:

Where x-1=(1/x1,…,1/xn) and y-1=(1/y1,…,1/yn).
,0  ,0

 ,  , 11

>>
== −−

yx

xAyyxAT

Note:
Any solution to matrix scaling problem is an 
stationary point of the so called logarithmic barrier 
function [Marshall & Olkin (1968)]:

For a fixed y, the function g(x,y) is convex in x. We 
can analytically minimize g(x,y) over x>0 to get :

We arrive at coordinate-decent, row and column 
normalization method:

The method is known to converge for scalable 
matrices [Sinkhorn (1967)]
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An Equivalent Formulation:
The matching problem can be also formulated as a 

linear programming problem:

Where X(u,v) is the weight of edge (u,v).
The constraints (II) will force the selection or rejection 
of every edge.
The constraints (I)  will guarantee that for every vertex 
only one of its incident edges is selected.

{ } ).II(  ),(),(,1,0),(                   

)I(  ),(,1),(                 

:Subject to

),(),(max

)(),(

)(),(

GEvuvuX

GVuvuX

vuXvuW

GEvu

GEvu

∈∀∈

∈∀≤∑

∑

∈

∈

Graph Isomorphism Problem:

Given: two graphs G=(V(G),E(G)) and H=(V(H),E(H)).
Problem description: Find a bijective mappings of the 
vertices of G to the vertices of H such that G and H are 
identical; i.e., (x,y) is an edge of G iff (f(x),f(y)) is an edge 
of H.
This also referred to as four vertex constraint. 

We will write G ≈ H if G and H are isomorphic.
Maximum Subgraph Isomorphism:

Find maximum sub-graphs  G’⊆ G and H’⊆ H, such that
G’ ≈ H’.

The problem is known to be hard for NP.

Matrix Form

Let us define the isomorphism matrix M between graphs G 
and H as:

Observe that similar constraints to ILP formulation is true:

                                          Otherwise
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Quadratic Formulation:
The four vertex constraint will form the basis of the 
optimization formulation of maximum graph 
isomorphism problem:

G H

u

v

s

t

Mu,s=1

Mv,t=1

G H

u

v

s

t

Mu,s=1

Mv,t=1

× ×

G H

u

v

s

t

Mu,s=0

Mv,t=0

G H

u

v

s

t

Mu,s=0

Mv,t=0
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Quadratic Formulation (cont’d.):
These four cases can be captured via a rectangular term
Mu,s×Mv,t×C(u,v),(s,t) , for all u,v∈ G and s,t ∈ H, where the term 
C(u,v),(s,t) is the measure of compatibility between edges a (u,v) or 
(s,t) and  will be defined as:

Where for a graph AG, and AH represent the adjacency matrices 
of graph G and H. 

Observe that:

H
ts

G
vutsvu AAC ),(),(),(),,( 31 −−=

[ ]
[ ]
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HEtsGEvu
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Note:
If under an isomeric mapping f, s=f(u) and t=f(v) then 
Mu,s×Mv,t×C(u,v),(s,t) =1, otherwise the rectangular term will have value 
“0”.
[Gary and Johnson(1979)]The maximum isomorphism problem then 
can be restated as finding a symmetric {0,1} matrix M that maximizes:
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A Graduated Assignment Algorithm for 
Graph Matching
Title: A Graduated Assignment Algorithm for Graph 
Matching

Authors: Gold and Rangarajan

Publication: IEEE PAMI, Volume 18, Number 4, April 
1996, pp 377-388. 

URL: 
http://noodle.med.yale.edu/~anand/ps/pamigm3.ps.gz

Weighted Graph Matching

For weighted graphs, G and g (whose links may 
take values in R1), find the match matrix M which 
minimizes:

subject to:
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C is defined as:

where c is a suitable compatibility function.  The 
match matrix M indicates which nodes match:

Adding a Second Constraint

1. Recall that a node in graph G may correspond to only 
one node in graph g.

2. But, the reverse also holds: a node in graph g may 
correspond to only one node in G.

3. How do we then ensure that in addition to only one entry 
per row converging to one, only one entry per column 
converges to one?

4. Sinkhorn proved that any square matrix with positive 
elements will converge to a doubly stochastic matrix 
through an iterative process that alternatively normalizes 
the rows and columns.

The Assignment Problem

Back to our maximization sub-problem. 

Given {Xai}, Xai 2 R1, Mai 2 {0,1}, 8 a ∑i=1
IMai=1 and 8 i ∑a=1

A

Mai = 1, our goal is to find M (a permutation matrix) that 
maximizes: 

This is known as the assignment problem in combinatorial 
optimization.

Algorithm

Initialize β to β0

Begin A: (Do A until (β ¸ βf))
Mai Ã eβ Xai

Begin B: (Do B until M converges)

Update M by normalizing across all rows

Mai Ã Maι / (∑i=1
I Mai)

Update M by normalizing across all columns

Mai Ã Maι / (∑a=1
A Mai)

End B

Increase β
End A
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Back to Weighted Graph Matching
1. Although the assignment problem can be solved in 

polynomial time, our weighted graph matching problem is 
a quadratic assignment problem, which is NP-complete:

2. We will find an approximate solution to our quadratic 
assignment problem by using a continuation method to 
solve a succession of assignment problems.

3. For each assignment problem, a globally optimal, doubly 
stochastic matrix is returned for the current value of the 
control variable

Approach

1. start with an initial M

2. compute first-order Taylor series expansion

3. find the softassign for the current assignment
4. substitute the resulting M back into the original energy 

formulation

5. slowly increase control parameter β until the algorithm 
“pushes” M toward an integer solution.

6. outliers and/or missing nodes can be accommodated by 
introducing slack variables (adds an extra row and 
column to M ), turning the inequality constraints into 
equality constraints

Demonstration: Image Feature Graphs

image of coffee cup with 
features hand labeled

image of table top with 
features hand labeled

Experiments: Random Graphs

graph size = 100, trials per plot = 700, plots are % of nodes deleted.
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Experiments: Weighted Graph Matching

graph size = 100, trials per plot = 600, plots are % of nodes deleted. 
Left: no deleted or spurious links; Right: links 5% spurious, 5%
deleted. (a) 40% deleted, 15% connectivity; (b) 40%, 10%; (c) 60%, 
15%; (d) 60%, 10%.

Limitations

1. GA can handle missing nodes, added/deleted 
edges, and perturbed attribute values, but not 
spurious nodes that affect existing graph structure.

2. Does not support many-to-many matching.

3. For object recognition, requires a linear search of 
the database - no indexing support.

Matching Trees

Let T1=(V1,E1) and T2=(V2,E2) denote two trees and 
consider the problem of maximum isomorphism between 
T1 and T2:

Find a maximum subsets of vertices V1’ ⊆ V1 and V2’ 
⊆ T2, |V1’| =|V2’|, and a mapping φ:V1’ →V2’ such 
that, for all u,v∈ V1’, (u,v)∈ E1 if and only if (φ(u), 
φ(v))∈ E2 .

We will transform this problem to that of computing a 
maximum clique in a related graph.

Product Graph
Given Two graph H and H’ their product graph (association 
graph) G=GH,H’ is defined as follows:

V(G)=V(H)×V(H’). 

Let u,v∈ V(H) and x,y∈ V(H’), and let α=[u,x] and β=[v,y] two 
of the possible vertices in G, then (α,β) is an edge in G iff
δ(u,v)=δ(x,y), where δ(.,.) is a distance function in 
corresponding graphs. 

u

x

H

H’

G

[u,x]

u

x

H

H’

G

[u,x]
v

y

[v,y]

δ(u,v)

δ(x,y)
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Isomorphism and Cliques:

Theorem [Pelillo(2002)]: Any maximal 
(maximum) subtree isomorphism between 
two trees induces a maximal (maximum) 
clique in the corresponding product graph 
and vice versa.

Prelude to Optimization
Let A=A(G) denote the n×n symmetric adjacency 
matrix of graph G:

Define the quadratic form f(x) for x∈ Rn as:

We have that:

           Otherwise.
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Quadratics Optimization 

Consider the following quadratic programming problem:
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The constraints of this problem will 
identify the n dimensional simplex. 
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Note:

The expression for f is increasing in k, and so the 
best we can do is when k is cardinality of the 
maximum clique in the graph G =(V, E), i.e., 
k=g(G)=α(G’).

Theorem: [Motzkin-Strauss]
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Application: Matching Hierarchical 
Structures using Association Graphs
Title:Matching Hierarchical Structures using Association 
Graphs

Authors: Pelillo, Siddiqi, and Zucker

Publication: IEEE PAMI Vol. 21, No. 11

Year: 1999

URL: http://www.dsi.unive.it/~pelillo/papers/pami99.pdf

Sven Dickinson and Ali Shokoufandeh gratefully acknowledge 
Marcello Pelillo for his contribution of materials to this talk.

Subgraph Isomorphism as a Maximum 
Clique Problem

b

4

a

c

3

1

2

1,a 1,b 1,c

4,a

4,b

4,c

3,c3,b3,a

2,a

2,b

2,c

(u,w)~(v,z) iff (u~v AND w~z) OR (u !~ v AND w !~ z)

Bomze has recently introduced a solution using a 
regularized version of f :

which is obtained by substituting in f the following 
adjacency matrix:

where In is the nxn identity matrix.

Solution

1
( )

2
g x x Ax x x′ ′= +

1ˆ( )
2 nA x A I= +

Theorem 2

Let C µ V, and let Xc be its characteristic vector. Then:

• C is a maximum clique of G , xc is a global maximizer of g in Sn. In 
this case, |C |=1/2(1-g(xc)).

• C is a maximal clique of G , xc is a local maximizer of g in Sn.

• All local (and hence global) maximizers of g on Sn are strict.

See (Bomze, Pelillo, and Stix, 1999) for proof.

A Stronger Result
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If f is linear, i.e., f is an n £ n matrix such that 
fi (x)=(Wx)i , then we can write:

and in the discrete domain:

[ ]
( ) ( )( ( ( )) ( ( ))),   1, ,

( ) ( ) ( ( )) ( ) ( ) ,   1, ,
i i i

i i i

x t x t f t f t i n

x t x t W t t W t i n

= − =
′= − =

x x

x x x

& K

& K

( ( ))
( 1) ( ) ,   1, ,

( ) ( )
i

i i

W t
x t x t i n

t W t
+ = =

′
x

x x
K

Results Application: Spectral Matching

Title: Shock Graphs and Shape Matching
Authors: Siddiqi, et. al.
Publication: IJCV
Year: 1999
URL: 
http://www.cs.toronto.edu/~sven/Papers/ijcv99.ps.g
z
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Matching Problem Formulation

Challenge:
Due to noise and occlusion, significant isomorphic 
subgraphs may simply not exist. 

query 
structure

candidate model 
structure 

We seek a Structural “Signature” that:

maps hierarchical structure to a point in some low 
dimensional space.
captures local structure to support indexing in the presence 
of occlusion.
is unique, i.e., different structures have different signatures.
is efficiently computed.
is stable, i.e., small structural perturbations due to noise 
result in small perturbations of the signature; moreover, 
perturbations at coarser levels have more impact than those 
at finer levels.

Naïve Characterizations of Structure

A B

Measure A B

Minimum degree 1 1

Maximum degree 3 3

Average degree 1.87 1.87

Average degree internal 2.86 2.86

Degree variance 0.92 0.92
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The Eigenspace of a Graph

Preliminaries:
• Let                                be the adjacency matrix of the 
graph      on       vertices. 
• Let      be an    -vertex graph obtained by adding                      
new vertices and a set of edges to the graph    .
• Let                                                       be a lifting 
operator which transforms a subspace of             to a 
subspace of                      .

We call this operator spectrum preserving if the non-zero 
eigenvalues of any matrix                               and its 
image with respect to the operator               are equal.

G m
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The Eigenspace of a Graph
Preliminaries:
• Let                                be the adjacency matrix of the 
graph      on       vertices. 
• Let      be an    -vertex graph obtained by adding                      
new vertices and a set of edges to the graph    .
• Let                                                       be a lifting 
operator which transforms a subspace of             to a 
subspace of                      .

We call this operator spectrum preserving if the non-zero 
eigenvalues of any matrix                               and its 
image with respect to the operator               are equal.

G m

Seeking a Structural “Signature” that: 
maps hierarchical structure to a point in some low 
dimensional space.
captures local structure to support indexing in the 
presence of occlusion.
is unique, i.e., different structures have different 
signatures.
is efficiently computed.
is stable, i.e., small structural perturbations due to 
noise result in small perturbations of the signature; 
moreover, perturbations at coarser levels have more 
impact than those at finer levels.

HGH EAA +Ψ= )(

G

GA′mn −

{ } nn
GH AA ×−∈Ψ− 1,1,0)(

GA

) (Ψ

Pt
GG PAPA ′=′

)( GAΨHA
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Any structural change in graph       can be represented in 
terms of a spectrum preserving operator and a noise matrix:

where          is a two-step lifting operator:

1. Add            zero rows and columns to       , forming      .
2. Compute                      , for suitable     , aligning rows 
and columns for corresponding vertices in       and             . 

The noise matrix,        , can therefore be represented as:
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Theorem (Wilkinson, 1965):

If      and            are          symmetric matrices, then for
all                      ,                        :

For       (perturbed graph) and      (original graph), the  
above theorem yields (after manipulation):

The eigenvalues of a graph are therefore stable under 
minor perturbations in graph structure.

H G

EA +

)())(()( 1 HGkHk EλAλAλ ≤Ψ−
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nn×
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A

nλλλ K≥≥ 21

Back to Our Example

A B

[4.168, 0.0] [3.414, 3.414]

Populating the Model Database
(compile time)

Model View 1M

aan v,

bbn v,

)),,(( 1 Kaa nMv

)),,(( 1 Kbb nMv

Model Database

Consider a bipartite graph matching formulation, in which the edges 
in the query and model graphs are discarded.

Hierarchical structure is seemingly lost, but can be encoded in the 
edge weights: ( )),(),(

),(
jidαjidα geom2struct1ejiW

+−=

Construct a Bipartite Graph:
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query and model 
graphs

Algorithm Overview

bipartite graph compute maximum 
cardinality, maximum 

weight matching

add best edge to solution and… recursively descend

Illustrative Example

Computed Correspondence
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Indexing 
Experiments

Unoccluded Queries

Occluded Queries
Generic Object Matching
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Example Correspondences Conclusions

• The eigenvalue characterization of hierarchical graph 
structure yields a powerful structural indexing 
mechanism applicable to the recognition of hierarchical 
image structures in computer vision. 

• This same eigenvalue characterization forms the heart 
of our matching algorithm that can determine node 
correspondence in the presence of clutter, occlusion, 
and spurious noise.

• This framework has been successfully applied to 
multiple generic object recognition domains.

Summary of the Approaches
Combinatorial Methods

Bipartite Matching:

• Discards graph structure, setting up a pure correspondence 
problem for which efficient max cardinality, max weight 
matching algorithms are available.

• To enforce structural and hierarchical constraints, bipartite 
matching can be structured coarse-to-fine, or structural 
information can be absorbed into the nodes.

• Occlusion can be handled, but limited indexing support 
provided, and limited invariance to noise.

Combinatorial Methods

Tree Edit Distance:

• Reformulates ordered tree matching as a string edit-distance 
matching problem, for which efficient solutions are known.

• Editing out clutter can slow down algorithm, adding a large 
edit distance when the embedded object may be identical to the 
model.

• Robust to noise and minor occlusion, but no indexing support.
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Optimization Methods

Graduated Assignment:

• efficient continuous optimization formulation that handles 
node and edge weights.

• exploits powerful doubly stochastic matrix convergence result 
by Sinkhorn.

• can handle lost nodes and spurious edges between nodes, but 
cannot accommodate spurious nodes within target structure.

• no indexing support.

Optimization Methods

Maximum Clique:

• handles rooted (hierarchical) trees, free trees, attributed 
trees.

• can handle arbitrary occlusion, but not noise in target 
structure.

• exploits powerful Motzkin-Straus mapping between discrete 
and continuous problems.

• no indexing support.

Algebraic Methods

Spectral Methods:

• low-dimensional characterization of graph structure.

• stable to minor structural perturbation.

• strong indexing support

• limited many-to-many matching support.

Choosing the Right Framework

Questions you should be asking yourself:

• should I even use a graph to model my features?
• exact or inexact matching?
• extent and type of noise?
• extent of occlusion?
• hierarchical or flat?
• trees or DAG’s?
• computational complexity?
• indexing support needed? (target detection or db retrieval)
• probabilistic components?
• topological or geometric matching?
• categorical or exemplar-based recognition?
• edge weights? node labels?



30

Open Problems

Graph indexing is rarely addressed by the graph algorithms 
community or the vision community.

Many-to-many matching is the real vision problem. We need 
matching frameworks that can support it, but more importantly, 
we need feature abstraction rules to group nodes.

Systematic evaluation of recognition performance (indexing 
efficiency, matching correctness) w.r.t. noise, occlusion, database 
scaling, is rare.  The vision community needs benchmark graphs 
that reflect real vision problems. 


