
Operating System Support for Planetary-Scale Network Services

Andy Bavier, Larry Peterson, Mike Wawrzoniak, Scott Karlin, Tammo Spalink,
Timothy Roscoe, David Culler, Brent Chun, Mic Bowman

Abstract
PlanetLab is a geographically distributed overlay network
designed to support the evaluation and deployment of
planetary-scale network services. Two high-level goals
shape its design. First, to enable a large research com-
munity to share the infrastructure, PlanetLab provides dis-
tributed virtualization, whereby each service runs in an iso-
lated slice of PlanetLab’s global resources. Second, to sup-
port competition among multiple network services, Planet-
Lab decouples the operating system running on each node
from the network-wide services that define PlanetLab, a
principle sometimes referred to as unbundled management.
This paper describes how PlanetLab realizes the goals of
distributed virtualization and unbundled management, with
a focus on the OS running on each node.

1 Introduction

PlanetLab is a geographically distributed overlay network
designed to support the evaluation and deployment of
planetary-scale network services [25]. It currently includes
nearly 200 machines spanning 80 sites and 15 countries,
and peers with 2600 Internet autonomous systems. It
supports over 120 active research projects focused on a
wide range of services, including file sharing and network-
embedded storage [9, 19, 28], content distribution net-
works [32], routing and multicast overlays [1, 7], QoS over-
lays [31], scalable object location services [2, 26, 27, 30],
anomaly detection mechanisms [8], and network measure-
ment tools [29].

As a distributed system, PlanetLab is characterized by a
unique set of relationships between principals—users, ad-
ministrators, researchers, service providers, and so on—
which make the design requirements for its operating sys-
tem different from traditional hosting services or timeshar-
ing systems.

The first relationship is between PlanetLab as an or-
ganization, and the institutions that own and host Planet-
Lab nodes: the former has administrative control over the
nodes, but local sites also need to enforce policies about

how the nodes are used, and the kinds and quantity of net-
work traffic the nodes can generate. This implies a need to
share control of PlanetLab nodes.

The second relationship is between PlanetLab and its
users: currently, researchers evaluating and deploying
planetary-scale services. Users must have access to the
platform. This implies a distributed set of machines that
must be shared between users in a way they will find use-
ful. A PlanetLab “account”, together with associated re-
sources, must therefore span multiple machines. We call
this abstraction a slice, and implement it using a technique
called distributed virtualization.

A third relationship exists between PlanetLab and those
researchers contributing to the system by designing and
building infrastructure services, that is, services that con-
tribute to the running of the platform as opposed to being
merely applications of it. Not only must these services run
in a slice, but PlanetLab must support multiple, parallel ser-
vices with similar functions developed by different groups.
We call this principle unbundled management, and it im-
poses its own requirements on the system.

Finally, PlanetLab exists in relation to the rest of the In-
ternet. Experience shows that the experimental network-
ing performed on PlanetLab can easily impact many ex-
ternal sites’ intrusion detection and vulnerability scanners.
This leads to requirements for policies limiting what traffic
PlanetLab users can send to the rest of the Internet, and a
way for concerned outside individuals to find out exactly
why they are seeing unusual traffic from PlanetLab. The
rest of the Internet needs to feel safe from PlanetLab.

The contribution of this paper is to describe in more de-
tail the requirements that result from these relationships,
and how PlanetLab fulfills them using a synthesis of oper-
ating systems techniques. This contribution is partly one
of “design” because PlanetLab is a work-in-progress, and
only time will tell what infrastructure services will evolve
to give it fuller definition. At the same time, however, this
is an “experiences” paper because the design is largely a
response to having hundreds of users stressing PlanetLab
over the last 15 months.

1

2 Requirements

This section defines distributed virtualization and unbun-
dled management, and identifies the requirements each
places on PlanetLab’s design.

2.1 Distributed Virtualization

PlanetLab services and applications run in a slice of the
platform: a set of nodes on which the service receives a
fraction of each node’s resources, in the form of a virtual
machine (VM) on the node. Virtualization and virtual ma-
chines are, of course, a well-established concept. What is
new in PlanetLab is distributed virtualization: the acquisi-
tion of a distributed set of VMs that are treated as a single,
compound entity by the system.

To support this concept, PlanetLab must have facilities
to create a slice, initialize it with sufficient persistent state
to boot the service or application in question, and bind the
slice to a set of resources on each constituent node. In con-
crete terms, the minimal persistent state for a service com-
prises a set of keys permitting ssh access to the VM on
each node, or a URL from which the newly created slice
downloads a boot script. The resources bound to a VM
include both physical resources on the node (e.g., cycles,
memory, and link bandwidth), and logical resources that
the VM controls (e.g., an allotment of TCP and UDP port
numbers).

2.1.1 Underspecified Abstraction

While the per-node properties of a slice are well-defined
(described in more detail in Section 4), the way that a slice
is composed from VMs on different nodes depends on the
slice creation service employed. Consistent with the prin-
ciple of unbundled management, PlanetLab needs to sup-
port multiple, competing slice creation services, and con-
sequently, must specify as little as possible, a priori, what
the global properties of a slice should be. Ultimately, what
a slice is, above and beyond a collection of VMs, will be
defined by the service that creates it; that is, slices are un-
derspecified. This in turn implies two requirements on the
PlanetLab OS:

1. It must provide a low-level interface for creating a
VM that can be shared by multiple slice creation ser-
vices. It must also host a simple, “bootstrapping” slice
creation service to create initial slices, including the
slices that other slice creation services run in.

2. It must provide an efficient, low-level programming
environment that gives service developers as much lat-
itude as possible in defining the behavior of a slice.

This second requirement has several implications. For ex-
ample, it means that the PlanetLab OS should not provide

tunnels that connect the constituent VMs into any partic-
ular overlay configuration, but should instead provide an
interface that allows each service to define its own topol-
ogy on top of the fully-connected Internet. Similarly, it
should not prescribe a single language or runtime system,
but instead allow slices to load whatever environments or
software packages they need.

An important technical issue that will influence how the
slice abstraction evolves is how quickly a network-wide
slice can be instantiated. Applications like the ones listed
in the Introduction are relatively long-lived (although pos-
sibly modified and restarted frequently), and hence the pro-
cess of creating the slice in which they run can be a heavy-
weight operation. On the other hand, a facility for rapidly
establishing and tearing down a slice (analogous to creat-
ing/destroying a network connection) would lead to slices
that are relatively short-lived, for example, a slice that cor-
responds to a communication session with a known set of
participants. We evaluate the performance of the current
slice creation mechanism in Section 5. It is not yet clear
what other slice creation services the user community will
provide, or how they will utilize the capability to create and
destroy slices.

2.1.2 Isolating Slices

PlanetLab must isolate slices from each other, thereby
maintaining the illusion that each slice spans a distributed
set of private machines. The same requirement is seen in
traditional operating systems, except that in PlanetLab the
slice is a distributed set of VMs rather than a single process
or image. Per-node resource guarantees are also required:
for example, some slices run time-sensitive applications,
such as network measurement services, that have soft real-
time constraints reminiscent of those provided by multime-
dia operating systems. This means three things with respect
to the PlanetLab OS:

• It must allocate and schedule node resources (cycles,
bandwidth, memory, and storage) so that the runtime
behavior of one slice on a node does not adversely
affect the performance of another on the same node.
Moreover, certain slices must be able to request a min-
imal resource level, and in return, receive (soft) real-
time performance guarantees.

• It must either partition or contextualize the available
name spaces (network addresses, file names) to pre-
vent a slice interfering with another, or gaining access
to information in another slice. This partitioning and
contextualization must be coordinated over the set of
nodes in the system.

• It must provide a stable programming base that cannot
be manipulated by code running in one slice in a way
that negatively affects another slice. In the context of

2

a Unix- or Windows-like operating system, this means
that a slice cannot be given root or system privilege.

2.1.3 Isolating PlanetLab

The PlanetLab OS must also protect the outside world from
slices. PlanetLab nodes are simply machines connected to
the Internet; as a consequence, buggy or malicious services
running in slices have the potential to affect the global com-
munications infrastructure. Due to PlanetLab’s widespread
nature, this impact goes far beyond the reach of an appli-
cation running on any single computer. This places two
requirements on the PlanetLab OS.

• It must thoroughly account resource usage, and make
it possible to place limits on resource consumption
so as to mitigate the damage a service can inflict on
the Internet. Proper accounting is also required to
isolate slices from each other. Here, we are con-
cerned both with the node’s impact on the hosting
site (e.g., how much network bandwidth it consumes)
and remote sites completely unaffiliated with Planet-
Lab (e.g., sites that might be probed from a Planet-
Lab node). Furthermore, the local administrators of a
PlanetLab site and PlanetLab as an organization need
to collectively set these policies for a given node.

• It must make it easy to audit resource usage, so that
actions (rather than just resources) can be accounted
to slices after the fact. Unlike traditional timesharing
systems, where the interactions between users and un-
suspecting outside entities is inherently rare, this con-
cern about how users (or their services) affect the out-
side world is a novel requirement for PlanetLab.

Security was recognized from the start as a critical issue
in the design of PlanetLab. However, effectively limiting
and auditing legitimate users has turned out to much more
significant an issue than securing the OS to prevent mali-
cious users from hijacking machines. To date, there have
been no security breaches of note, but a single PlanetLab
user running TCP throughput experiments on UC Berkeley
nodes managed to consume over half of the available band-
width on the campus gateway over a span of days. Also,
many experiments (e.g., Internet mapping) have triggered
IDS mechanisms, resulting in complaints that have caused
local administrators to pull the plug on nodes. The Inter-
net has turned out to be unexpectedly sensitive to the kinds
of traffic that experimental planetary-scale services tend to
generate.

2.2 Unbundled Management

Planetary-scale services are a relatively recent and ongoing
subject of research, and in particular, this includes the ser-
vices required to manage PlanetLab as a global platform.

Moreover, it is an explicit goal of PlanetLab to allow inde-
pendent organizations (in this case, research groups) to de-
ploy alternative services in parallel, allowing users to pick
which ones to use. This applies to application-level ser-
vices targeted at end-users, as well as infrastructure ser-
vices used to manage and control PlanetLab itself. Slice
creation is one example of an infrastructure service. Others
include resource discovery, topology discovery and routing
support, performance monitoring, and software distribu-
tion. The key to unbundled management is to allow parallel
infrastructure services to run in their own slices of Planet-
Lab, and to evolve over time.

This is a new twist on the traditional problem of how to
evolve a system, where one generally wants to try a new
version of some service in parallel with an existing ver-
sion, and roll back and forth between the two versions. In
our case, multiple competing services are simultaneously
evolving. The desire to support unbundled management
leads to two requirements for the PlanetLab OS.

• To minimize the functionality subsumed by the
PlanetLab OS—and maximize the functionality run-
ning as services on top of the OS—only local (per-
node) abstractions should be directly supported by the
OS, allowing all global (network-wide) abstractions to
be implemented by infrastructure services. We have
already discussed this in relation to slice creation, but
it extends to almost all aspects of PlanetLab’s infras-
tructure.

• To maximize the opportunity for services to compete
with each other on a level playing field, the interface
between the OS and these infrastructure services must
be sharable, and hence, without special privilege. In
other words, rather than have a single privileged ap-
plication controlling a particular aspect of the OS, the
PlanetLab OS potentially supports many such man-
agement services. One implication of this interface
being sharable is that it must be well-defined, explic-
itly exposing the state of the underlying OS. In con-
trast, the interface between an OS and a privileged
control program running in user space is often ad hoc
since the control program is, in effect, an extension of
the OS that happens to run in user space.

Operating system design often faces a tension between
implementing functionality in the kernel and running it in
user space, the objective often being to minimize kernel
code. Like many VMM architectures, the PlanetLab OS
faces an additional, but analogous, tension between what
can run in a slice or VM, and functionality (such as slice
user authentication) which requires extra privilege or ac-
cess.

In addition to these, there is a third aspect to the prob-
lem which is peculiar to PlanetLab: functionality that can
be implemented by parallel, competing subsystems, versus

3

mechanisms which by their very nature can only be imple-
mented once (such as slice creation). The PlanetLab OS
strives to minimize the latter, but there remains a core of
non-kernel functionality which has to be unique on a node.

2.3 Practical Concerns

In addition to the requirements imposed by slices and un-
bundled management, practical concerns have also influ-
enced the PlanetLab OS. The research community was
ready to use PlanetLab the moment the first machines
were deployed. Waiting for a new OS tailored for broad-
coverage services was not an option; besides, without first
gaining some experience, no one could fully understand
what such an OS should look like. Moreover, experience
with previous testbeds strongly suggested two biases of
application writers: (1) they are seldom willing to port
their applications to a new API, and (2) they expect a full-
featured OS rather than a minimalist API tuned for OS de-
signer’s research agenda.

This suggested the strategy of starting with a popular
full-featured OS—we elected to use Linux—and incremen-
tally transforming it based on experience. Finding the right
way to balance the requirements outlined above with the
desire to support a full-featured OS like Linux has been the
greatest source of tension (both technically and socially) in
the design of the PlanetLab OS.

3 Design Alternatives

The PlanetLab OS is a synthesis of existing operating sys-
tems abstractions and techniques, applied to the new con-
text of a distributed platform, and motivated by the require-
ments derived in the previous section. This section dis-
cusses how PlanetLab’s requirements recommend certain
approaches over others, and in the process, discusses re-
lated work.

The first challenge of the PlanetLab OS is to provide
a virtual machine abstraction for slices; the question is at
what level. At one end of the spectrum, full hypervisors
like VMware completely virtualize the physical hardware
and thus support multiple, unmodified operating system bi-
naries. If PlanetLab were to supply this low level of virtu-
alization, each slice could run its own copy of an OS and
have access to all of the devices and resources made avail-
able to it by the hypervisor. This would allow PlanetLab to
support OS kernel research as well, and provide better iso-
lation by removing contention for OS resources. The cost
of this approach is performance: VMware cannot support
the number of simultaneous slices required by PlanetLab
due to the large amount of memory consumed by each ma-
chine image. Thus far, the PlanetLab community has not
required the ability to run multiple operating systems, and
so PlanetLab is able to take advantage of the efficiency of
supporting a single OS API.

A slightly higher-level approach is to use paravirtualiza-
tion, proposed by so-called isolation kernels like Xen [4]
and Denali [33]. Short of full virtualization of the hard-
ware, a subset of the processor’s instruction set and some
specialized virtual devices form the virtual machine ex-
ported to users. Because the virtual machine is no longer
a replica of a physical machine, operating systems must be
ported to the new “architecture”, but this architecture can
support virtualization far more efficiently. Paravirtualizing
systems are not yet mature, but if they can be shown to
scale, they represent a promising technology for PlanetLab.

The approach we adopted is to virtualize at the system-
call level, similar to commercial offerings like Ensim [12],
and projects such as User Mode Linux [10], BSD’s
Jail [18], and Linux vservers [17]. Such high-level vir-
tualization adequately supports PlanetLab’s goals of sup-
porting large numbers of overlay services, while providing
reasonable assurances of isolation.

A second, orthogonal challenge is to isolate virtual ma-
chines. Operating systems with the explicit goal of iso-
lating application performance go back at least as far as
the KeyKOS system [16], which provided strict resource
accounting between mutually antagonistic users. More re-
cently, isolation mechanisms have been explored for multi-
media support, where many applications require soft real-
time guarantees. Here the central problem is crosstalk,
where contention for a shared resource (often a server pro-
cess) prevents the OS from correctly scheduling tasks. This
has variously been addressed by sophisticated accounting
across control transfers [23], scheduling along data paths
in Scout [24], or entirely restructuring the OS to eliminate
server processes in the data path [20]. The PlanetLab OS
borrows isolation mechanisms from Scout, but the key dif-
ference is in how these mechanisms are controlled, since
each node runs multiple competing tasks that belong to a
global slice, rather than a purely local set of cooperating
tasks.

Having settled on virtualization at the system call level,
the third challenge is how to provide low-level access to
some virtual devices, particularly the network. Vertically-
structured operating systems like Exokernel and Nemesis
have explored allowing access to raw network devices by
using filters on send and receive [5, 11]. The PlanetLab
OS does something similar by providing shared network
access using a “safe” version of the raw socket interface.
The primary difference between the PlanetLab OS and ex-
okernels is the degree to which devices must be shared. It
is not enough to provide “raw” access to a device so that
a user-level OS can manage it. Instead, the kernel must
take responsibility for fairly sharing access among mul-
tiple competing services. It is also the case that the ser-
vices running on PlanetLab are more interested in building
network-wide functionality than in having low-level access
to devices. Thus, there is little penalty in providing a full-
featured file system interface, for example, rather than sup-

4

port for low-level disk access. Similarly, providing access
to the network at the IP level is sufficient.

A fourth challenge is the distributed coordination of re-
sources. This problem has been explored in the context of
Condor [22] and more recently the Open Grid Services Ar-
chitecture [14]. However, both these systems are aimed at
the execution of batch computations, rather than the sup-
port of long-running network services. They also seek to
define complete architectures within which such computa-
tions run. In PlanetLab the requirements are rather differ-
ent: the platform must support multiple approaches to cre-
ating and binding resources to slices. To illustrate this dis-
tinction, we point out that both the Globus grid toolkit and
the account management system of the Emulab testbed [34]
have been implemented above PlanetLab, as have more
service-oriented frameworks like SHARP [15].

A final, and somewhat new challenge is to support the
monitoring and management of a large distributed infras-
tructure. On the network side, commercial management
systems such as HP OpenView and Micromuse Netcool
provide simplified interfaces to routing functionality, ser-
vice provisioning, and equipment status checks. On the
host management side, systems such as IBM’s Tivoli and
Computer Associates’ UniCenter address the correspond-
ing problems of managing large numbers of desktop and
server machines in an enterprise. Both kinds of systems
are aimed at single organizations with well-defined appli-
cations and goals, seeking to manage and control the equip-
ment they own. Managing a wide-area, evolving, federated
system like PlanetLab (or the Internet as a whole) poses
different challenges. Here, we are pretty much on our own.

4 Planetlab OS

This section defines the PlanetLab OS, the per-node soft-
ware base on top of which the global slice abstraction is
built. The PlanetLab OS consists of a Linux 2.4-series ker-
nel with patches for vservers and hierarchical token bucket
packet scheduling; the SILK (Scout in Linux Kernel) mod-
ule that provides CPU scheduling, network accounting, and
safe raw sockets; and the node manager, a trusted domain
that contains slice bootstrapping machinery and node mon-
itoring and management facilities. We describe the func-
tionality provided by these components and discuss how it
is used to implement slices, focusing on four main areas:
the VM abstraction, resource allocation, controlled access
to raw network sockets, and system monitoring.

4.1 Virtual Machine

A slice corresponds to a set of virtual machines. Each VM,
in turn, is implemented as a vserver [17]. The vserver
mechanism is a patch to the Linux 2.4 kernel that pro-
vides the illusion of multiple, independently managed vir-
tual servers running on a single machine; each slice maps

onto a unique vserver on each of its constituent physical
machines.

Vservers are the principal mechanism in PlanetLab for
providing virtualization on a single node, and contextu-
alization of name spaces—user identifiers, files, etc. As
well as providing security between slices sharing a node,
they provide a limited root privilege which allows slices
to customize their VM as if it was a dedicated machine.
Vservers also correspond to the resource containers used
for isolation, which we discuss in section 4.2. This section
describes the virtualization provided by vservers.

4.1.1 Interface

Vservers provide virtualization at the system call level
by extending the non-reversible isolation provided by
chroot for filesystems to other operating system re-
sources such as processes and SysV IPC. Processes within
a vserver are given full access to files, processes, SysV IPC,
network interfaces, and accounts which can be named in
their containing vserver and are denied access to all other
operating system resources otherwise. Each vserver is also
given a weaker form of root along with its own UID/GID
namespace which allows each vserver to have its own supe-
ruser while at the same time not compromising the security
of the underlying machine.

Despite having only a subset of the true superuser’s ca-
pabilities, vserver root is still useful in practice. It allows
for modification of the vserver’s root filesystem which, for
example, allows users to customize what software pack-
ages are installed in a particular vserver. Combined with
per-vserver UID/GID namespaces, it allows vservers to im-
plement their own internal account management schemes
(e.g., by maintaining a per-vserver /etc/passwd and
running an sshd daemon a different TCP port), which pro-
vides the basis for integration with other wide-area testbeds
such as NetBed [34] and RON [1]. Finally, as we gain ad-
ditional experience on what privileges services actually re-
quire, adding additional extensions to the existing set of
Linux capabilities provides a natural path towards expos-
ing privileged operations in a controlled manner.

Vservers communicate with one another via local IP, and
not local sockets or other system IPC functions. This strong
separation between slices simplifies resource management
and isolation between vservers, since the interaction be-
tween two vservers is independent of whether they exist
on the same node, and slices must therefore be written ac-
cordingly.

One namespace that is not contextualized to slices is
that of network addresses (IP address and port numbers):
achieving this would entail either giving each slice its own
IP address on a physical node, or else hiding each vserver
behind a per-machine Network Address Translator. We
rejected both these options in favor of slices sharing port
numbers and addresses on a single node.

5

4.1.2 Implementation

Virtualization in vservers is implemented at the system call
interface and isolation is enforced based on the idea of a
security context. Each vserver on a machine is assigned a
unique security context, and each process running on that
machine is associated with a specific vserver through its se-
curity context. A process’s security context is assigned via
a new system call and inherited by all of the process’s de-
scendants. Isolation between different vservers is enforced
through the system call interface using a combination of
a process’s security context and UID/GID when checking
access control privileges and deciding what information
should be exposed to a given process. All of the aforemen-
tioned mechanisms are implemented as part of the baseline
vserver patch to the kernel. We have also implemented a
number of utility programs that simplify the creation and
destruction of vservers and allow users to be transparently
redirected into vservers for their specific slices using the
SSH protocol.

On PlanetLab, a vserver is created by first choosing a
unique security context and creating a mirror of a reference
root filesystem for the vserver using hard links and the im-
mutable and immutable invert filesystem bits. Next, two
Linux accounts are created using our utility programs, one
in the node’s primary vserver and one in the vserver just
created. Both accounts use a login name identical to that of
the slice. The account in the main vserver is specified to use
a special shell, /bin/vsh. This shell is a modified bash
shell that we have written which performs the following
four actions upon login: a switch to the slice’s vserver se-
curity context, a chroot to the vserver’s root filesystem,
relinquishing of a subset of the true superuser’s capabili-
ties, and redirection into an account in the vserver with an
identical login name. The end result of this two account
arrangement is that users accessing their virtual machines
remotely via SSH/SCP are transparently redirected into the
appropriate vserver and need not modify any of their exist-
ing service management scripts.

By virtualizing above a standard Linux kernel, vservers
achieve scalability through large amounts of resource shar-
ing and no active state for idle vservers. Sharing of physical
memory and disk space is substantial. For physical mem-
ory, savings are accrued by having a single copy of the ker-
nel, a single copy of all kernel and user-level daemons, and,
perhaps most importantly, sharing of read-only and copy-
on-write memory segments across unrelated vservers. Disk
space sharing is also significant due to the introduction of
the filesystem immutable invert bit which allows for a prim-
itive form of filesystem copy-on-write (COW). By using
COW on chrooted vserver root filesystems, vserver disk
footprints are reduced to just 5.7% of what would be re-
quiring with copying (Section 5.1). Achieving comparable
amounts of sharing in a virtual machine monitor or isola-
tion kernel approach is strictly harder, albeit the isolation
guarantees are different.

Local admin
− resource limits
− kill process

���
���
���
���
���
���

���
���
���
���
���
���

�����
�����
�����
�����
�����
�����

���
���
���
���
���
���

Slices

− slice bootstrapping

Node manager

− sensors
− auditing

− resource allocation

Linux++

Figure 1: PlanetLab vserver contexts

A weaker version of root allows each vserver to have
its own superuser while at the same time not compromis-
ing the security of the underlying machine. Superuser priv-
ileges are granted safely to vservers by having each vserver
root relinquish a subset of the true superuser’s capabil-
ities and by leveraging the isolation already provided by
vservers to limit the scope of a vserver root’s activities to
the containing vserver. In Linux, access control for priv-
ileged operations is based on a capabilities system. Ca-
pabilities determine whether privileged operations such as
pinning physical memory or rebooting the machine are al-
lowed or disallowed. Vserver root is denied all capabili-
ties that could undermine the security of the machine (e.g.,
accessing raw devices) and granted all other capabilities.

4.1.3 Discussion

Sections 4.1.1 and 4.1.2 describe the capabilities of the
vserver contexts in which every slice runs. However, each
PlanetLab node supports two special security contexts with
additional capabilities, as illustrated in Figure 1. The first
is a privileged context called the node manager. The node
manager comprises components that should be considered
part of the PlanetLab OS but that reside outside of the ker-
nel, along with pieces of the slice bootstrapping facility.
Essentially, the node manager context runs with standard
root capabilities and includes the machinery to create a
slice, initialize its state, and assign resources to it; sensors
that export information about the node; and a traffic audit-
ing service. The second context provides weaker system
privileges to site administrators, with the goal of giving
them a set of tools to manage the nodes without provid-
ing them with full root access. The administrative con-
text has a complete view of the entire machine and can cap
the node’s total outgoing bandwidth rate, kill arbitrary pro-
cesses, run tcpdump to monitor traffic on his network,
and so on. Of course, the site administrator always has re-
course to flipping the node’s power switch if he suspects
things have gone very wrong.

Virtualizing above the kernel comes at a cost: weaker
guarantees on isolation and additional challenges for elim-
inating QoS crosstalk. Unlike virtual machine monitors
and isolation kernels that provide isolation at a low-level,

6

vservers implement isolation at the system call interface.
Hence, a malicious vserver that exploits some obscure bug
in the Linux operating system could potentially gain con-
trol of the underlying operating system, and hence com-
promise security of the machine. (In practice, we have yet
to observe such an incident. However, in principle, such
an attack is still possible.) Such an attack would not be
possible using a lower-level VM monitor. Another poten-
tial cost incurred by virtualizing above the kernel is QoS
crosstalk. Eliminating all forms of QoS crosstalk (e.g., in-
teractions through the Linux buffer cache) is strictly harder
in a vserver-based approach. As described in the next sec-
tion, however, isolation can be accomplished at a fairly
deep level.

4.2 Resource Allocation

A key feature of slices is the isolation they provide between
services. A small sampling of experiences on PlanetLab
serves to motivate the isolation mechanisms described in
this section. For example:

• Just before the SOSP deadline, one experiment con-
sumed all available file descriptors on several nodes,
effectively preventing other slices from using the disk
or network.

• Several times a day a PlanetLab node somewhere runs
out of disk space, often as a result of out-of-control
event logging within a slice.

• Buggy code in one slice recently went into an infinite
loop and consumed 100% of the CPU on 50 nodes at
once.

The PlanetLab OS’s node manager supports slice boot-
strapping by providing a low-level, uniform interface for
obtaining resources on a node. The node manager gener-
ates resource “tickets” called rcaps (resource capability)
that can be redeemed for specific node resources. A ser-
vice that wants to run on the node acquires the appropriate
rcaps and presents them to the node manager. At this point,
the node manager can perform admission control and either
accept or reject an rcap; assuming the rcap is accepted, the
node manager binds the resources associated with the rcaps
to the service’s virtual machine.

Note that the node manager does not make any policy
decisions regarding how resources are used; policy is im-
posed by infrastructure services running on top of the node
manager and by local site administrators. As an example
of the latter, the site administrator may set an upper bound
on the total outgoing bandwidth of a node, and the node
manager will heed this limit when issuing rcaps. The rest
of this section describes the node manager interface and the
mechanisms used to allocate resources and enforce limits.

4.2.1 Interface

An rcap represents rights to use specific resources on a
node. An rcap is a 128-bit opaque value, knowledge of
which provides access to the associated resources. Each
node manager tracks both the set of resources available and
a mapping between dedicated resources and rcaps. The
node manager provides trusted services with the following
operation to create an rcap:

acquire(rspec) -> rcap

The acquire operation takes an rspec (resource speci-
fication) as an argument. The node manager creates and re-
turns a new rcap and remembers the mapping between the
two; i.e., the rcap serves as an index into a table of rspecs.

The rspec is used to describe a slice’s access privileges to
resources over time. Each rspec consists of a list of reser-
vations, proportional share values, or upper bound limits
for specific resources. It also specifies the start and end
times of the interval over which these values apply. The
rspec allows reservation of a virtual machine, rates for CPU
and network bandwidth consumption, memory pages, disk
space, specific TCP and UDP port numbers, and a pool
of file descriptors. Proportional sharing, rather than hard
reservation, is also supported for CPU and bandwidth. Fi-
nally, upper bound limits can be expressed for the rates of
incoming and outgoing network bandwidth, rate at which
CPU cycles are received, number of distinct IP flows, num-
ber of UDP and TCP ports opened, number of file descrip-
tors held, and memory pages and disk space consumed.
When used for slice resource provisioning, rspecs gener-
ally include only reservation and proportional share privi-
leges. Upper bound privileges are used to leverage resource
schedulers to control slice behavior. Reservation privileges
provide guaranteed resource bounds, meaning that exactly
the specified share of resources will be available during the
time window. For proportional share best effort tickets, the
resources available to the virtual machine during the time
interval depends on the share value relative to other active
privileges.

Once acquired, rcaps can be passed from one service to
another, where the resources associated with the rcap are
bound to a virtual machine (vserver) at some later time
(slice creation time) using the bind operation:

bind(slice_id, rcap)

The bind operation takes a slice identifier and an rcap
as arguments. To incorporate node resources, a slice first
needs a virtual machine rcap; without this, other rcaps are
useless. Once the virtual machine is created, the node man-
ager associates the resources described by additional rcaps
with it.

The initial node manager implementation is visible as an
XML-RPC server listening on a well known TCP port. The
node manager interface is not remotely network accessible,

7

that is, a specific node manager’s operations are only avail-
able to services running on that node. Infrastructure ser-
vices provide communication authentication and encryp-
tion operations (SSL, SSH, etc) that are too complex to sup-
port in the node manager, allowing for competing imple-
mentations to evolve over time. All nodes are bootstrapped
with an infrastructure service that assists other services in
contacting remote node managers by acting as a proxy.

4.2.2 Implementation

Static resources, such as memory pages, disk space, and file
descriptors, can be isolated using per-slice reservations and
limits. These are implemented by wrapping the appropriate
system calls or kernel functions to intercept allocation re-
quests. Each request is either accepted or denied based on
the slice’s current overall usage, and if it is accepted, the
slice’s counter is incremented by the appropriate amount.
Currently the ability to reserve and limit these resources
within a virtual machine is being added to the vservers im-
plementation.

For dynamic resources such as the CPU and network
link, two possible approaches to providing isolation are
fairness and guarantees. Fairness ensures that each of the
N slices running on a node receives no less than 1/N of
the available resources during periods of contention, while
guarantees provide a slice with a reserved amount of the
resource. In the latter case, the scheduling mechanism
that provides guarantees as a consequence provides isola-
tion. PlanetLab provides CPU and bandwidth guarantees
for slices that request them, and “fair best effort” service
for the rest. Additionally, resource limits on outgoing traf-
fic and CPU usage can protect the rest of the world from
PlanetLab.

The Hierarchical Token Bucket (htb) queuing discipline
of the Linux Traffic Control facility (tc) [21] is used to cap
the total outgoing bandwidth of a node, cap per-vserver
output, and provide bandwidth guarantees and fair service
between vservers. The node administrator configures the
root token bucket with the maximum rate at which the site
is willing to allow traffic to leave the node. At vserver
startup, a token bucket is created that is a child of the root
token bucket; if the service requests a guaranteed band-
width rate, the token bucket is configured with this rate,
otherwise it is given a minimal rate (5Kbps) for “fair best
effort” service. Packets sent by a vserver are tagged in
the kernel and subsequently classified to the vserver’s to-
ken bucket. The htb queuing discipline then provides each
child token bucket with its configured rate, and fairly dis-
tributes the excess capacity from the root to the children
that can use it in proportion to their rates. A bandwidth
cap can be placed on each vserver limiting the amount of
excess capacity that it is able to use. By default, the rate
of the root token bucket is set at 100Mbps; each vserver is
capped at 10Mbps and given a rate of 5Kbps for “fair best
effort” service.

In addition to this general rate-limiting facility, htb can
also be used to limit the outgoing rate for certain classes
of packets that may raise alarms within the network. For
instance, we are able to limit the rate of outgoing pings,
or of packets containing IP options to a small number per
second; this simply involves creating additional child token
buckets and classifying outgoing packets so that they end
up in the correct bucket. Identifying potentially trouble-
some packets and figuring out reasonable output rates for
them is a subject of ongoing work.

CPU scheduling is implemented by the SILK kernel
module running on all PlanetLab nodes. SILK’s CPU
scheduling infrastructure leverages Scout [24] to provide
vservers with CPU guarantees and fairness. Replac-
ing Linux’s CPU scheduler was necessary because, while
Linux provides approximate fairness between processes, it
cannot enforce fairness between vservers or provide guar-
antees. PlanetLab’s CPU scheduler uses a proportional
sharing (PS) scheduling policy to fairly share the CPU.
It incorporates the resource container [3] abstraction and
maps each vserver onto a resource container that possesses
some number of shares. Individual processes spawned by
the vserver are all placed within the vserver’s resource con-
tainer. The result is that, together, the vserver’s processes
receive a CPU rate proportional to the vserver’s shares di-
vided by the sum of shares of all active vservers. For ex-
ample, if a vserver is assigned 10 shares and the sum of
shares of all active vservers (i.e., vservers that contain a
runnable process) is 50, then the the vserver with 10 shares
gets 10/50 = 20% of the CPU.

The PS scheduling policy can provide minimum re-
source guarantees by capping the number of shares and us-
ing an admission controller to ensure that the cap is not ex-
ceeded. For example, limiting the number of outstanding
CPU shares to 1000 means that each share is a guarantee
for at least 0.1% of the CPU. Additionally, the PlanetLab
CPU scheduler provides a switch to allow a vserver to pro-
portionally share the excess capacity, or to limit it to its
guaranteed rate (similar to the Nemesis scheduler []). In
the previous example, the vserver with 10 shares received
20% of the CPU because it was allowed to proportionally
share the excess; with this bit turned off, it would be rate-
capped at 10/1000 = 1% of the CPU.

4.2.3 Discussion

A trusted infrastructure service, called PlanetLab Central
(PLC), is responsible for globally bootstrapping slices.
PLC maintains a database of principals, slices, resource al-
locations, and policies on a central server. A PLC com-
ponent called the resource manager also runs in the node
manager context on each node.1 The PLC resource man-

1Ideally, PLC’s resource manager would run in a separate, but privi-
leged VM on each node, since it is a trusted global infrastructure service.
It is currently co-located with the node manager as an implementation
expediency.

8

ager communicates with the central PLC server to obtain
slice information and invokes the acquire and bind op-
erations to create, initialize, and associate resources with a
slice. Currently we have implemented only a web-based in-
terface to PLC, which is described below; a programmatic
interface is in the works.

PLC maintains a list of Principal Investigators (PIs) who
are empowered to create slices. A PI sponsors each user
of PlanetLab and assumes ultimate responsibility for his
actions. To create a new slice, the PI logs into the PlanetLab
Central web site and follows these steps:

• Choose a descriptive name for the slice. Slices with a
common prefix can be managed together, so slices for
students in the networking class at Princeton might all
begin with “princeton cs461”.

• Assign users to the slice. From the standpoint of
PlanetLab, a user maps to an SSH public key.

• Choose a set of machines on which the slice will run.
It is assumed that a separate “resource discovery” ser-
vices exist outside of PLC to aid the PI in locating
machines with the desired levels of available resources
and network location to include in the set.

• Choose the per-node resource reservations, propor-
tional shares, and limits for this slice. Each PI has
some number of resource “credits” available, and the
resources allocated to the slice are charged against the
PI’s account. By default there are no limits placed on
the slice and all resources are obtained “best effort”.

The PI’s actions do not create the slice, they only cause
the PLC slice database to be updated. Every ten minutes,
the PLC resource manager on each node polls the PLC
server to obtain a signed, timestamped file that contains all
necessary information for all slices running on that node.
This information includes a list of slices that should be
present on the node, resource allocation information for
each slice, and policy information at the node, slice, and
principal level. For each slice, the resource manager then
applies relevant policies to the slice’s resource allocation
to obtain an appropriate rcap, which is then bound to the
slice’s VM. In other words, the rcaps never leave the ma-
chine; the PLC resource manager calls acquire and then
immediately calls bind. The duration of each rcap ob-
tained by the resource manager is only twenty minutes, so
a currently running slice that does not appear in the most
recent slice update will be reclaimed after a short time.

We also envision infrastructure services that support rich
resource management policies to emerge and provide com-
peting alternatives to PLC. One example of such a service
is SHARP [15], a secure distributed resource management
framework that allows agents, acting on behalf of sites, to
exchange computational resources in a secure, fully decen-
tralized fashion. In SHARP, agents peer to trade resources

with peering partners using cryptographically signed state-
ments about resources. An implementation of SHARP cur-
rently runs in its own slice (bootstrapped using PLC), and
interacts with the node manager to create, bootstrap, and
bind resources to virtual machines on each node. A user
creates a slice using SHARP by first obtaining promises
from agents at target sites, redeeming those promises for
rcaps on specific nodes at those sites, and finally by asking
the node manager on the specific nodes to create new vir-
tual machines and the bind resources to them. The ease of
building SHARP over the node manager interface serves as
a proof of concept demonstrating the simplicity and gener-
ality of the interface.

The bottom line is that creating and handing out rcaps
must be a privileged operation. The unanswered long-term
question is whether a centralized service like PLC will re-
tain this privilege, thereby having the opportunity to imple-
ment a global policy about how resources are allocated, or
if the local node administrator will subsume responsibility
for distributing rcaps, perhaps by entrusting a service like
SHARP to distribute and acquire resources. If one views
PlanetLab as analogous to an ISP, then the former seems
likely. Alternatively, a fully decentralized vision of how
PlanetLab will evolve suggests the latter.

4.3 Safe Raw Sockets

The PlanetLab OS provides a “safe” version of Linux raw
sockets that services can use to send and receive IP pack-
ets without root privileges. These sockets are safe in two
senses. First, each raw socket is bound to a particular TCP
or UDP port and receives traffic only on that port; conflicts
are avoided by ensuring that only one socket of any type
(i.e., standard TCP/UDP or raw) is sending on a particular
port. Second, outgoing packets are filtered to make sure
that the local addresses in the headers match the binding of
the socket. Safe raw sockets support network measurement
experiments and protocol development on PlanetLab.

Safe raw sockets can also be used to monitor traffic on
the node. A raw “sniffer” socket can be bound to any port
that is already opened by the same VM, and this socket re-
ceives copies of all packets sent and received on that port.
Additionally, privileged users can open a special admin-
istrative sniffer socket that receives copies of all outgoing
packets on the machine tagged with the context ID of the
sending vserver; this administrative socket is used to imple-
ment the traffic monitoring facility described in Section 4.4.

4.3.1 Interface

A standard Linux raw socket captures all incoming IP pack-
ets and allows writing of arbitrary packets to the network.
In contrast, a safe raw socket is bound to a specific UDP or
TCP port and receives only packets matching the protocol
and port to which it is bound. Outgoing packets are filtered

9

to ensure that they are properly formed (e.g., the source IP
and UDP/TCP port numbers are not spoofed).

Safe raw sockets use the standard Linux socket API with
minor semantic differences. Just as in standard Linux,
first a raw socket must be created with the socket sys-
tem call, with the difference that it is necessary to spec-
ify IPPROTO TCP or IPPROTO UDP in the protocol field.
Once the socket is created, it must be bound to a particu-
lar local port of the specified protocol using the standard
Linux bind system call. At this point the socket can
send and receive data. The usual sendto, sendmsg,
recvfrom, recvmsg and select calls can all be
used. The data received includes the IP and TCP/UDP
headers, but not the link layer header. The data sent, by
default, does not need to include the IP header; a service
that wants to include the IP header sets the IP HDRINCL
socket option on the socket.

ICMP packets can also be sent and received through safe
raw sockets. Each safe raw ICMP socket is bound to ei-
ther a local TCP/UDP port or an ICMP identifier, depend-
ing on the type of ICMP messages the socket will receive
and send. To get ICMP packets associated with a spe-
cific local TCP/UDP port (e.g., Destination Unreachable,
Source Quench, Redirect, Time Exceeded, Parameter Prob-
lem), the ICMP socket needs to be bound to the specific
port. To exchange ICMP messages that are not associated
with a specific TCP/UDP port—e.g., Echo, Echo Reply,
Timestamp, Timestamp Reply, Information Request, and
Information Reply—the socket has to be bound to a spe-
cific ICMP identifier. The ICMP identifier is a 16-bit field
present in the ICMP header. Only messages containing the
bound identifier can be received and sent through a safe raw
ICMP socket.

PlanetLab users can debug protocol implementations or
applications using “sniffer” raw sockets. Vservers lack the
necessary permissions to put the network card into promis-
cuous mode and so cannot run tcpdump in the standard
way. A sniffer raw socket can be bound to a TCP or
UDP port that was previously opened by the same user;
the socket receives copies of all packets sent or received
on the port but cannot send packets. A small utility called
plabdump opens a sniffer socket and pipes the packets to
tcpdump for parsing, so that a user can get full tcpdump-
style output for any of his connections.

4.3.2 Implementation

Safe raw sockets are implemented by the SILK kernel mod-
ule. SILK intercepts all incoming IP packets using Linux’s
netfilter interface and demultiplexes each to a Linux
socket or to a safe raw socket. Those packets that de-
multiplex to a Linux socket are returned to Linux’s pro-
tocol stack for further processing; those that demultiplex
to a safe raw socket are placed directly in the per-socket
queue maintained by SILK. When a packet is sent on a safe
raw socket, SILK intercepts it by wrapping the socket’s

sendmsg function in the kernel and verifies that the ad-
dresses, protocol, and port numbers in the packet headers
are correct. If the packet passes these checks, it is handed
off to the Linux protocol stack via the standard raw socket
sendmsg routine.

SILK’s port manager maintains a mapping of port as-
signments to vservers that serves three purposes. First, it
ensures that the same port is not opened simultaneously by
a TCP/UDP socket and a safe raw socket (sniffer sockets
excluded). To implement this, SILK must wrap the bind,
connect, and sendmsg functions of standard TCP/UDP
sockets in the kernel, so that an error can be returned if an
attempt is made to bind to a local TCP or UDP port al-
ready in use by a safe raw socket. In other words, SILK’s
port manager must approve or deny all requests to bind to
a port, not just those of safe raw sockets. Second, when
bind is called on a sniffer socket, the port manager can
verify that the port is either free or already opened by the
vserver attempting the bind. If the port was free, then af-
ter the sniffer socket is bound to it the port is owned by
that vserver and only that vserver can open a socket on that
port. Third, SILK allows the node manager described in
Section 4.2.1 to reserve specific ports for the use of a par-
ticular vserver. The port manager stores a mapping for the
reserved port so that it is considered owned by that vserver,
and all attempts by other vservers to bind to that port will
fail.

4.3.3 Discussion

The driving application for safe raw sockets has been the
Scriptroute [29] network measurement service. Scrip-
troute provides users with the ability to execute measure-
ment scripts that send arbitrary IP packets, and was orig-
inally written to use privileged raw sockets. For exam-
ple, Scriptroute implements its own versions of ping and
traceroute, and so needs to send ICMP packets and
UDP packets with the IP TTL field set. Scriptroute also re-
quires the ability to generate TCP SYN packets containing
data to perform sprobe-style bottleneck bandwidth esti-
mation. Safe raw sockets allowed Scriptroute to be quickly
ported to PlanetLab by simply adding a few calls to bind.
Other users of safe raw sockets are the modified versions of
traceroute and ping that run in a vserver (on Linux,
these utilities typically run with root privileges in order to
open a raw socket). Additionally, several groups have al-
ready implemented TCP in user-space using safe raw sock-
ets, or are in the process of doing so.

Safe raw sockets also make it facilitate user-level pro-
tocol stacks. This allows a slice to utilize, for example, a
variant of TCP that is tuned for high-bandwidth pipes [?] or
packet re-ordering that might occur when data is stripped
across multiple overlay paths [?]. A BSD-based TCP li-
brary currently exists and runs on PlanetLab.

Safe raw sockets are just one example of how PlanetLab
services need to be able to share certain address spaces.

10

Another emerging example is that slices that want to con-
trol IP tunneling want to customize the routing table so as
to override default routes for its own packets. Yet another
example is the need to share access to well-known ports;
e.g., multiple services want to run a DNS server. In both
cases, we are adopting an approach similar to that used for
raw sockets: partition the address space by doing early de-
multiplexing at a low level in the kernel. No single service
is granted privileged and exclusive access to the address
space.

Note that an alternative to sharing and partitioning a sin-
gle space among all virtual machines is to contextualize
it—that is, we could present each VM with its own local
version of the space by moving the demultiplexing to an-
other level. For instance, we could assign a separate IP
address to each VM and allow each to use the entire port
space and manage its own routing table. In fact, vservers
already support this capability. The problem is that we sim-
ply do not have enough IPv4 addresses available to assign
on the order of 1000 to each node.

4.4 Monitoring

Good monitoring tools are clearly required to support a dis-
tributed infrastructure such as PlanetLab, which runs on
hundreds of machines worldwide, and host dozens of net-
work services that use and interact with each other and the
Internet in complex and unpredictable ways. Managing
this infrastructure—collecting, storing, propagating, aggre-
gating, discovering, and reacting to observations about the
system’s current conditions—is one of the most difficult
challenges facing PlanetLab.

Consistent with the principle of unbundled management,
we have defined a low-level sensor interface for uniformly
exporting data from the underlying OS and network, as
well as from individual services. Data exported from a
sensor can be as simple as the process load average on a
node or as complex as a peering map of autonomous sys-
tems obtained from the local BGP tables. That is, sensors
encapsulate raw observations that already exist in many dif-
ferent forms, and provide a shared interface to alternative
monitoring services.

Although the long-term goal is for these monitoring ser-
vices to detect, reason about, and react to anomalous be-
havior before it becomes disruptive, PlanetLab has an im-
mediate need of responding to disruptions after the fact.
Frequently within the past year, traffic generated by Planet-
Lab researchers has caught the attention of ISPs, academic
institutions, Web sites, and sometimes even home users. In
nearly all cases, the problems have stemmed from naive
service design and analysis, programmer errors, or hyper-
sensitive intrusion detection systems. Examples include
network mapping experiments that probe large numbers of
random IP addresses (looks like a scanning worm), services
aggressively traceroute’ing to certain target sites on dif-
ferent ports (looks like a portscan), services performing

distributed measurement to a target site (looks like a DDoS
attack), services sending large numbers of ICMP packets
(not a bandwidth problem, but renders low-end routers un-
usable), and so on. Addressing such complaints requires
an auditing tool that can map an incident onto a responsi-
ble party.

4.4.1 Interface

A sensor provides a particular kind of information that
is available (or can be derived) on on a local node. A
sensor server aggregates several sensors at a single ac-
cess point, thereby providing controlled sharing of sensors
among many clients (e.g., monitoring services). To obtain a
sensor reading, a client makes a request to a sensor server.
Each sensor outputs one or more tuples of untyped data
values. Every tuple from a sensor conforms to the same
schema. Thus, a sensor can be thought of as providing ac-
cess to a (potentially infinite) database table.

Sensor semantics are divided into two types: snapshot
and streaming. Snapshot sensors maintain a finite size ta-
ble of tuples, and immediately return the table (or, con-
ceivably, some subset of it) when queried for it. This can
range from a single tuple which rarely varies (e.g. “num-
ber of processors on this machine”) to a circular buffer that
is constantly updated, of which a snapshot is available to
clients (for instance, “the times of 100 most recent connect
system calls, together with the associated slices”). Stream-
ing sensors follow an event model, and deliver their data
asynchronously, a tuple at a time, as it becomes available.
A client connects to a streaming sensor and receives tuples
until either it or the sensor server closes the connection.

More precisely, a sensor server is an HTTP [13] compli-
ant server implementing a compliant subset of the specifi-
cation (GET and HEAD methods only) listening to requests
from localhost on a particular port. Requests come in
the form of uniform resource identifiers (URIs) in GET
methods. For example, the URI:

http://localhost:33080/nodes/ip/name

is a request to the sensor named “nodes” at the sensor
server listening on port 33080. The portion of the URI af-
ter the sensor name (i.e., ip/name) is interpreted by the
sensor. In this case, the nodes sensor returns a comma-
separated lines containing the IP address and DNS name
of each registered PlanetLab node. We selected HTTP as
the sensor server protocol because it is a straight-forward,
well understood, and well supported protocol. The primary
format for the data returned by the sensor is a text file con-
taining easy-to-parse comma separated values.

4.4.2 Implementation

An assortment of sensor servers have been implemented to
date, all of which consist of a stripped-down HTTP server

11

encapsulating an existing source of information. For ex-
ample, one sensor server reports various information about
kernel activities. The various sensors exported by this
server are essentially wrappers around the /proc file sys-
tem. Example sensors include meminfo (returns infor-
mation about current memory usage), load (returns 1-
minute load average), load5 (returns 5-minute load aver-
age), uptime (returns uptime of the node in seconds), and
bandwidth(slice) (returns the bandwidth consumed
by a slice, given by a slice id).

These examples are simple in at least two respects. First,
they require virtually no processing; they simply parse and
filter values already available in /proc. Second, they nei-
ther stream information nor do they maintain any history.
One could easily imagine a variant of bandwidth, for
example, that both streams the bandwidth consumed by the
slice over that last 5 minute period, updated once every five
minutes, or returns a table of the last n readings it had made.

Another example sensor server reports information
about how the local host is connected to the Internet, in-
cluding path information returned by traceroute, peer-
ing relationships determined by a local BGP feed, and la-
tency information returned by ping. This sensor server il-
lustrates how sensors sometimes require more complex and
expensive implementations; some send and receive mes-
sages over the Internet before they can respond, and some
cache the results of earlier invocations.

4.4.3 Discussion

Using the sensor abstraction, and an emerging collection of
sensor implementations, an assortment of monitoring ser-
vices are being deployed. Many of these services are mod-
eled as distributed query processors, including PIER [?],
Sophia [?], and IrisNet [?]. For example, Sophia allows
users to make declarative statements about PlanetLab’s
state in a Prolog-like programming language. To illustrate,
the following shows a rule declaration followed by its eval-
uation. The rule defines a slice bandwidth expres-
sion to be the sum of slice bandwidths on all the nodes
within the last 30 seconds. Evaluating this rule determines
the total bandwidth consumed (SliceBandwidth) by a
particular slice (slice47) across all PlanetLab nodes.

slice_bandwidth(Slice, Bandwidth) :-
forall([Node, BwVar],

(node(Node),
bandwidth(env(node(Node),

time(Time),
(Time>now-30)),

slice(Slice),
BwVar)),

Result),
sumlist(Result, Bandwidth).

eval(slice_bandwidth(slice47,
SliceBandwidth)).

The terms in this expression—e.g., bandwidth()—are
Prolog wrappers for one of the available sensors on each
node. In effect, the sensors server as I/O for Sophia.

Again turning from longer term efforts to short-term
problems, it has been necessary to build an auditing ser-
vice on top of the available sensor information. The main
goal of this service is to minimize the amount of time the
PlanetLab support staff has to spend responding to each in-
cident report. Ultimately, the hope is to remove the support
team entirely from the process, enabling the victim to di-
rectly complain to the responsible research group.

Specifically, a traffic auditing service runs on every
PlanetLab node, snooping all outgoing traffic using a spe-
cial raw socket provided by the SILK module that tags
each packet with the ID of the vserver that sent it. From
each packet, the auditing service logs the time it was sent,
the IP source and destination, protocol, port numbers, and
TCP flags if applicable. It then generates Web pages on
each node that summarize the traffic sent in the last hour
by IP destination and slice name. The hope is that an
administrator at a site that receives questionable packets
from a PlanetLab machine will type the machine’s name
or IP address into his browser, find the audit-generated
pages, and use them to contact the experimenters about
the traffic. For example, an admin who clicks on an IP
address in the destination summary page is shown all of
the PlanetLab accounts that sent a packet to that address
within the last hour, and provided with links to send email
to the researchers associated with these accounts. Another
link directs the admin to the network traffic database at
www.planet-lab.org where back logs are archived, so
that he can make queries about the origin of traffic sent ear-
lier than one hour ago.

So far, our experience with the traffic auditing service
has been mixed. On the one hand, the PlanetLab sup-
port team has found it very useful for responding to traffic
queries; after receiving a complaint, they use the Web inter-
face to identify the responsible party and forward the com-
plaint on to them. As a result, there has been a reduction
in overall incident response time and the time invested by
support staff per incident. On the other hand, many external
site administrators either don’t find the web page or choose
not to use it. For example, when receiving a strange packet
from planetlab-1.cs.princeton.edu, most sites re-
spond by sending email to abuse@princeton.edu; by
the time the support team receives the complaint, it has
bounced through several levels of university administra-
tion. We may be able to avoid this indirection by pro-
viding reverse DNS mappings for all nodes to node-
name.planet-lab.org, but this requires effort from
each site that sponsors PlanetLab nodes. Finding mecha-
nisms that further decentralize the problem-response pro-
cess is ongoing work.

Finally, although our experience to date has involved
implementing and querying read-only sensors that can

12

be safely accessed by untrusted monitoring services, one
could easily imagine PlanetLab also supporting a set of ac-
tuators that only trusted management services could use to
control PlanetLab. For example, there might be an actuator
that terminates a slice, such that a Sophia expression can
be written to kill a slice that has violated global bandwidth
consumption limits. Today, slice termination is not exposed
as an actuator, but is implemented in the node manager
and can be invoked only by the trusted PLC service, or an
authenticated network operator that remotely logs into the
node manager.

5 Evaluation

This section evaluates three aspects of slice creation and
initialization.

5.1 Vserver Scalability

The scalability of vservers is primarily determined by
disk space for vserver root filesystems and service-specific
storage. On PlanetLab, each vserver is created with a
root filesystem that points back to a trimmed-down ref-
erence root filesystem which comprises 1408 directories
and 28003 files covering 508 MB of disk. Using vserver’s
primitive COW on all files, excluding those in /etc and
/var, each vserver root filesystem mirrors the reference
root filesystem while only requiring 29 MB of disk space,
5.7% of the original root filesystem size. This 29 MB con-
sists of 17.5 MB for a copy of /var, 5.6 MB for a copy of
/etc, and 5.9 MB to create 1408 directories (4 KB per di-
rectory). Given the reduction in vserver disk footprints af-
forded by COW, we have been able to create 1,000 vservers
on a single PlanetLab node. In the future, we would like to
push disk space sharing even further by using a true filesys-
tem COW and applying techniques from systems such as
the Windows Single Instance Store [6].

Kernel resource limits are a secondary factor in the scal-
ability of vservers. While each vserver is provided with
the illusion of its virtual execution environment, there still
remains a single copy of the underlying operating system
and associated kernel resources. Under heavy degrees of
concurrent vserver activity, it is possible that limits on ker-
nel resources may become exposed and consequently limit
system scalability. (We have already observed this with file
descriptors.) The nature of such limits, however, are no
different from that of large degrees of concurrency or re-
source usage within a single vserver or even on an unmod-
ified Linux kernel. In both cases, one solution is to simply
extend kernel resource limits by recompiling the kernel. Of
course, simple scaling up of kernel resources may be in-
sufficient if inefficient algorithms are employed within the
kernel (e.g., O(n) searches on linked lists). Thus far, we
have yet to run into these types of algorithmic bottlenecks.

5.2 Slice Creation

This section reports how long it takes the node manager
to create a vserver on a single node. The current imple-
mentation of PLC has each node poll for slice creation in-
structions every 10 minutes, but this is an artifact of piggy-
backing the slice creation mechanism on existing software
update machinery. The more interesting question is how
heavy-weight the per-node aspect of slice creation is, as-
suming an efficient event propagation service.

To create a new slice on a specific node, a slice creation
service must complete the following steps at that node:

1. the slice creation service contacts a port mapping ser-
vice to find the port where the node manager’s XML-
RPC server is listening for requests;

2. the slice creation service performs a node manager
acquire RPC to obtain a ticket for immediate rights
to a vserver and best-effort resource usage;

3. the slice creation service performs a node manager
bind RPC to bind the ticket to a new slice name;

4. the node manager, after completing the RPCs, creates
the new vserver and notifies the necessary resource
schedulers to effect the newly added resource bind-
ings for the new slice; and

5. the node manager first calls vadduser to instantiate
the vserver and then calls vserver-init start exe-
cution of software within the new vserver.

Running on a 1.2GHz Pentium, the first three steps com-
plete in 0.15 seconds, on average. How long the fourth
and fifth steps takes depends on how the user wants to ini-
tialize the slice. At a minimum, the vserver creation and
initialization takes an additional 9.66 seconds on average.
However, this does not include the time to load an initialize
any service software such as SSHD or other packages. It
also assumes a hit in a warm cache of vservers. Creating a
new vserver from scratch takes over a minute.

5.3 Service Initialization

This section uses an example service—Sophia—to demon-
strate how long it takes a service to initialize a service in a
slice once the slice exists.

Sophia’s basic slice is managed by combination of RPM,
apt-get and custom slice tools. When a Sophia slice is cre-
ated, it must be loaded with the appropriate environment.
This is accomplished by executing a boot URL script inside
each vserver. The boot URL script downloads and installs
apt-get tools and a root Sophia slice RPM, and starts an
update process. The update process periodically, using the
apt-get tool, downloads the tree of current packages spe-
cific for the Sophia slice. If a newer package based on

13

RPM hierarchy is found, it and it’s dependencies are down-
load and installed. With this mechanism, the new version
of packages, are not directly pushed to all the nodes, but are
published in the Sophia packages tree. The slice’s update
mechanism then polls (potentially followed with an action
request push) the package tree and performs the upgrade
actions.

In the current setting, on average it takes 11.2 seconds to
perform an empty update on a node, that is, to download the
package tree, but not find anything new to upgrade. When a
new Sophia “core” package is found and it needs to be up-
graded, the time increases to 25.9 seconds per node. These
operations occur in parallel, so the slice upgrade time is
not bound by the sum of node update times. However, the
slice is to be considered upgraded only when all of its ac-
tive nodes are finished upgrading. When run on the 180
nodes in the current system, the average update time (cor-
responding to the slowest node) is 228.0 seconds.

The performance could be much improved, for example,
by use of a better distribution mechanism such as a CDN,
Bullet, or Bittorent. Also using a faster alternative to the
RPM package dependencies system could improve the lo-
cally performed dependencies checks.

From these sample slice boot/update times, it can be con-
cluded that the current slice architecture is better suited for
services of medium to long lifetime and not for short life-
time services on the order of a network connection.

6 Conclusions

Based on experience providing the network research com-
munity with a testbed for planetary-scale services, the
PlanetLab OS has evolved a set of mechanisms to sup-
port distributed virtualization and unbundled management.
The design allows network services to run in a slice of
PlanetLab’s global resources, with the PlanetLab OS pro-
viding only local (per-node) abstractions. As much global
(network-wide) functionality as possible pushed onto in-
frastructure services running in their own slices. Only slice
creation (coupled with resource allocation) and slice termi-
nation run as a global privileged service, but in the long-
term.

References

[1] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Mor-
ris. Resilient Overlay Networks. In Proceedings of the
18th ACM Symposium on Operating Systems Principles
(SOSP), pages 131–145, Chateau Lake Louise, Banff, Al-
berta, Canada, October 2001.

[2] M. Balazinska, H. Balakrishnan, and D. Karger. INS/Twine:
A Scalable Peer-to-Peer Architecture for Intentional Re-
source Discovery. In Proceedings of the 1st International
Conference on Pervasive Computing (Pervasive 2002),
pages 195–210, August 2002.

[3] G. Banga, P. Druschel, and J. C. Mogul. Resource con-
tainers: A new facility for resource management in server
systems. In Proceedings of the Third USENIX Symposium
on Operating System Design and Implementation (OSDI),
pages 45–58, New Orleans, Louisiana, 1999.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the
Art of Virtualization. In Proceedings of the 19th ACM Sym-
posium on Operating Systems Principles (SOSP), Bolton
Landing, Lake George, New York, October 2003.

[5] R. Black, P. Barham, A. Donnelly, and N. Stratford. Pro-
tocol Implementation in a Vertically Structured Operating
System. In Proceedings of IEEE Conference on Computer
Networks, November 1997.

[6] W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur.
Single Instance Storage in Windows 2000. In Proceedings
of the 4th USENIX Windows Systems Symposium, pages 13–
24, Seattle, Washington, August 2000.

[7] Y. Chu, S. Rao, and H. Zhang. A Case For End System
Multicast. In Proceedings of the ACM SIGMETRICS 2000
Conference, pages 1–12, Santa Clara, California, June 2000.

[8] B. Chun, J. Lee, and H. Weatherspoon. Netbait: a
Distributed Worm Detection Service, 2002. http://
netbait.planet-lab.org/.

[9] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with CFS. In Proceed-
ings of the 18th ACM Symposium on Operating Systems
Principles (SOSP), pages 202–215, Chateau Lake Louise,
Banff, Alberta, Canada, October 2001.

[10] J. Dike. User-mode Linux. In Proceedings of the 5th Annual
Linux Showcase and Conference, Oakland, CA, November
2001.

[11] D. R. Engler and M. F. Kaashoek. DPF: fast, flexible mes-
sage demultiplexing using dynamic code generation. In Pro-
ceedings of the ACM SIGCOMM ’96 Conference: Applica-
tions, Technologies, Architectures, and Protocols for Com-
puter Communication, pages 53–59, Stanford, California,
August 1996.

[12] Ensim Corp. Ensim Virtual Private Server. http:
//www.ensim.com/products/materials/
datasheet_vps_051003.pdf, 2000.

[13] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1; RFC 2616. Internet Request for Comments, June
1999.

[14] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke.
The Physiology of the Grid: An Open Grid Ser-
vices Architecture for Distributed Systems Integra-
tion. http://www.gridforum.org/ogsi-wg/
drafts/ogsa_draft2.9_2002-06-22.pdf, June
2002. draft 2.9.

[15] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. Sharp:
An architecture for secure resource peering. In Proceedings
of the 19th ACM Symposium on Operating Systems Princi-
ples, October 2003.

[16] N. Hardy. The KeyKOS Architecture. Operating Systems
Review, 19(4):8–25, October 1985.

14

[17] Jacques Gelinas. Linux vservers Project. http://www.
solucorp.qc.ca/miscprj/s_context.hc.

[18] P.-H. Kamp and R. N. M. Watson. Jails: Confining the
Omnipotent Root. In Proceedings of the 2nd International
SANE Conference, May 2000.

[19] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. OceanStore: An Ar-
chitecture for Global-Scale Persistent Storage. In Proceed-
ings of the 9th ACM International Conference on Archi-
tectural Support for Programming Languages and Operat-
ing Systems (ASPLOS), pages 190–201, Cambridge, Mas-
sachusetts, November 2000.

[20] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. T. Barham,
D. Evers, R. Fairbairns, and E. Hyden. The Design and Im-
plementation of an Operating System to Support Distributed
Multimedia Applications. IEEE Journal of Selected Areas
in Communications, 14(7):1280–1297, 1996.

[21] Linux Advanced Routing and Traffic Control.
http://lartc.org.

[22] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of
idle workstations. In Proceedings of the 8th International
Conference of Distributed Computing Systems, June 1988.

[23] C. W. Mercer, S. Savage, and H. Tokuda. Processor Ca-
pacity Reserves: Operating System Support for Multimedia
Applications. In International Conference on Multimedia
Computing and Systems, pages 90–99, 1994.

[24] D. Mosberger and L. L. Peterson. Making Paths Explicit in
the Scout Operating System. In Proceedings of the Second
USENIX Symposium on Operating System Design and Im-
plementation (OSDI), pages 153–167, Seattle, Washington,
October 1996.

[25] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
Blueprint for Introducing Disruptive Technology into the In-
ternet. In Proceedings of HotNets–I, Princeton, New Jersey,
October 2002.

[26] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically-Aware Overlay Construction and Server Se-
lection. In Proceedings of the IEEE INFOCOM 2002 Con-
ference, pages 1190–1199, New York City, June 2002.

[27] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In Proceedings of the 18th IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware
2001), pages 329–350, Heidelberg, Germany, November
2001.

[28] A. Rowstron and P. Druschel. Storage Management and
Caching in PAST, A Large-Scale Persistent Peer-to-Peer
Storage Utility. In Proceedings of the 18th ACM Sympo-
sium on Operating Systems Principles (SOSP), pages 188–
201, Chateau Lake Louise, Banff, Alberta, Canada, October
2001.

[29] N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A
facility for distributed internet measurement. In Proceed-
ings of the 4th USENIX Symposium on Internet Technologies
(USITS ’03), Seattle, Washington, March 2003.

[30] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
ishnan. Chord: A Peer-to-Peer Lookup Service for Internet
Applications. pages 149–160, August 2001.

[31] L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz.
OverQoS: Offering Internet QoS Using Overlays. In Pro-
ceedings of HotNets–I, Princeton, New Jersey, October
2002.

[32] L. Wang, V. Pai, and L. Peterson. The Effectiveness of Re-
quest Redirection on CDN Robustness. In Proceedings of
the Fifth USENIX Symposium on Operating System Design
and Implementation (OSDI), pages 345–360, Boston, Mas-
sachusetts, December 2002.

[33] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and perfor-
mance in the denali isolation kernel. In Proceedings of the
Fifth USENIX Symposium on Operating System Design and
Implementation (OSDI), Boston, Massachusetts, December
2002.

[34] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An In-
tegrated Experimental Environment for Distributed Systems
and Networks. In Proceedings of the Fifth USENIX Sym-
posium on Operating System Design and Implementation
(OSDI), pages 255–270, Boston, Massachusetts, December
2002.

15

