
Slice Creation and Management

Brent Chun
Intel Research Berkeley

Tammo Spalink
Princeton University

PDN–03–013

July 2003

Status: Ongoing Draft.



D
R

A
FTSlice Creation and Management

Brent Chun and Tammo Spalink

July 17, 2003

1 Introduction

Slices are the central resource allocation abstraction in PlanetLab. This document
establishes the vocabulary needed to talk about slices, and defines an architecture
for dynamic slice creation on behalf of principals. This is a working document
which contains a proposed interface specification. This document is meant to pro-
vide additional detail for the architecture described in PDN-02-005.

This document describes mechanisms for resource allocation and policy implemen-
tation, but not policy itself. Policy is the decision of which slices should be granted
access to which resources. The goal of this document is to describe a set of general
mechanisms and tools which can be used to efficiently facilitate arbitrary policies
imposed by higher levels. Different nodes, and even different sets of resources
within a node, may be governed by different policies.

The lowest level in the PlanetLab resource allocation infrastructure is the node
manager, which presents an uniform interface at all nodes. This node manager
interface is designed to be very simple and thus should only change infrequently.
More complex aspects of resource allocation are implemented at higher levels as
special trusted infrastructure services. This document completely specifies the
node manager interface, and provides two example infrastructure services that use
this interface. The first of these, the PlanetLab Central service, is the first service
to run on any node of the system and is used to bootstrap other services.

2 Node Architecture

The foundation of the PlanetLab resource allocation infrastructure is the node man-
ager. The node manager interface is a uniform interface for communicating re-

1



D
R

A
FTsource usage policy to a node, available at every node. The initial implementation

of the node manager is a thin service layer above an existing operating system, but
in principle should be thought of as presenting a system call interface.

Node managers do not make any policy decisions, they simply provide a resource
access and policy enforcement interface. Policy is imposed by infrastructure ser-
vices, and a set of privileged node managers operations are available only to these
trusted services.

The node manager interface is not remotely network accessible, a specific node
manager’s operations are only available to services executing on that node. Com-
munication authentication and encryption operations (SSL, SSH, etc) are too com-
plex to support in the node manager. It is also likely that these mechanisms should
be optimized to match the usage profile of the system. Infrastructure services pro-
vide implement these mechanisms, allowing for competing implementations and
evolution over time. All nodes are bootstrapped with at least one infrastructure
service which assists other services in contacting remote node managers by being
widely deployed and acting as a proxy. In further defense of this design decision,
we assert that functionality which can be safely and efficiently left out of a low
level, and moved upward, should be (reminiscent of the end-to-end argument [5]).

2.1 Resource Distribution

Initial distribution of resources to services involves policy decisions and remote
communication, and is thus implemented by infrastructure services. Once non-
infrastructure services acquire resources from infrastructure services, they are free
to trade these with one another. Rights to use specific resources are represented by
resource capabilities (rcaps), as described in Section 2.1.2.

Each node manager tracks both the set of resources available, and a mapping be-
tween dedicated resources and capability rcap datastructures that act as access
promises. Infrastructure services can acquire these capabilities by presenting and
node manager with a specification of a subset of the remaining available resources
using rspec datastructures. In return the node manager will create a new rcap and
remember the mapping between the two.

The node manager makes the following operation available to infrastructure ser-
vices:

acquire(rspec) -> rcap

2



D
R

A
FTA summary of this and other node manager operations, including datastructure

details is available in Section 2.7.

2.1.1 Resource Specifications

The rspec is used to describe access privileges (privs) to resources over time. Each
rspec can contain a list of reservations, proportional share values, or upper bound
limits for any number of different resources available on a specific node. An rspec
does not include location information; thus a more sophisticated datastructure or
multiple rspecs are needed to describe the resource needs for services that span
multiple nodes. Each rspec also has interval information to describe the time win-
dow over which all of the contained access privileges apply.

When used for slice resource provisioning, rspecs generally include only reserva-
tion and proportional share privs. Upper bound privs are used to leverage resource
schedulers to control slice behavior and are explained in more detail in Section 2.4.

Reservation privs provide guaranteed resource bounds, meaning that exactly the
specified share of resources will be available during the time window. For propor-
tional share best effort tickets, the resources available to the virtual machine during
the time interval depends on the share value relative to other active privs.

Details on the rspec datastructure are presented in Section 2.7. It is expected that as
the underlying resource scheduler evolves, additional types of privs will be added
and existing ones refined to improve expressiveness and granularity.

2.1.2 Resource Capabilities

Node managers provide access to allocated resources in the form of rcap datastruc-
tures. The rcaps are simple 128 bit opaque values, and knowledge of an rcap value
implies access to the associated resources. Because the space of possible rcap val-
ues is very large, it is improbable that any adversary is able to guess a valid rcap
value and thereby hijack resources allocated to other services.

At the node manager, the rcap serves as an index into a table of rspecs. The content
of the rspec, and thus the form factor of the associated resources, is a policy matter
and thus was provided by an infrastructure service during an acquire operation.
The node manager will create rcaps for any rspec that matches available resources,
but it practice it may be desirable for these rspecs to be standardized. For example,
to simplify support for resource markets it may be important that rcaps resemble

3



D
R

A
FTstandardised commodities spanning fixed length short time intervals. This would

allow for a liquid market where prices can track demand fluctuations at hourly or
daily granularities. It may also be important for bounding node manager state, that
infrastructure services acquire resources only within a bounded time horizon.

2.2 Resource Binding

Slice creation is really the process of binding the resources associated with an rcap
to a virtual machine. To incorporate node resources, a slice needs a virtual machine.
Without an rcap that includes a virtual machine resource, other rcaps are useless.
Similarly, having more than one virtual machine resource per node at one time is
also unnecessary.

Resources may be bound to a slice using the following node manager operation,
which is available to all local services as well as infrastructure services:

bind(slice_id, rcap)

The process of determining which resources should be part of a slice may be an
ongoing one, especially for persistent slices. Both the needs of the service and the
state of PlanetLab may change over time, and the slice management mechanism
must allow adjustment accordingly. For example, network links may become too
congested to allow effective use of certain nodes, nodes may simply fail, or the de-
mand for the service may greatly exceed the initial expectation of the principal. In
all of these cases adjusting the resources that make up the slice becomes important.
Slice may need to be very dynamic and creation may often be an iterative or even
ongoing process.

2.2.1 Slice Namespaces

All node manager operations are performed on behalf of users called principals,
which have entered into a legally binding usage agreement with the PlanetLab
administration. During this process they are authenticated and assigned a globally
unique 32 bit principal id value.

Each principal may create and be responsible for many slices. The slice id datas-
tructure is a tuple of principal id and slice tag, where the tag is a XXX bit opaque
value that can be chosen by the creating principal. This divides the slice id names-
pace evenly across principals.

4



D
R

A
FTThis document discusses actions as being performed by services. This indicates

that operations may be triggered directly by software running in a slice belong-
ing to the service, or by users responsible for the service who have authenticated
themselves through an outside interface. Outside interfaces can include custom
interfaces provided by the service, or those provided by infrastructure services.

2.2.2 Virtual Machine Creation and Bootstrap

A virtual machine is created for a slice at the start time of the first bound rspec
which contains a virtual machine resource. At least one virtual machine resource
must be bound to a slice at all times during the lifetime of the slice. Once no
virtual machine is bound to a slice, no other resource bindings have effect. This
means that the resources and state associated with the slice may be reclaimed and
reused. Node managers handle this charitably in a best-effort manner. Unused
virtual machine state is retained as long as the resource requirements of doing so
do not conflict with the needs of active services, at which point the resources are
reclaimed.

Once a virtual machine is created, the service must have some way of contacting
it to upload software state and begin execution. A freshly created virtual machine
contains a minimal file system image. After creation, a standard bootstrap script
provided by PlanetLab central is run in the virtual machine which prepares it for
access by its users. In the current implementation, this script contacts the local
PlanetLab central infrastructure service to acquire a port number and SSH public
keys for the slice’s users. It then starts an sshd configured to allow access for
those keys. This sshd allows the service to bootstrap the slice with its own data,
and is free to terminate and remove the server and the script once it has gained
access.

2.2.3 Direct Node Manager Access

Although a number of node manager operations are available only to infrastructure
services, the bind operation and a few others are available to any local slice.

The node manager interface is quite primitive and is tailored to support develop-
ment of efficient infrastructure services. However, operations are made available
to other slices where possible to allow sophisticated slices to optimize by commu-
nicating with local node managers directly.

5



D
R

A
FTThe bind call is treated specially by the node manager. It is available only to

infrastructure services and to slices which have the same creating principal as the
target slice.

2.3 Manipulating Capabilities

Once a service has acquired one or more rcaps from node managers and before
these rcaps are bound, there are no architectural restrictions on their exchange be-
tween services. To facilitate transactions involving rcaps, the node manager pro-
vides the following manipulation operations which are available to all local slices:

reissue(rcap) -> rcap
split(rcap, rspec list) -> rcap list
merge(rcap list) -> rcap

The reissue operation is useful to re-establish the rcap as a secret. Any possessor of
an rcap may use the reissue operation to exchange it for a new rcap with the same
associated resources. The old rcap is voided, ensuring that the holder of the new
rcap is the only user with access to the resources.

The split operation uses the rspec list argument as the basis for how to subdivide
the rcap argument. If the provided rspecs do not sum to match the original rcap’s
rspec, the operation will fail.

The merge operation takes a set of rcaps and merges them into a single rcap which
represents the aggregate resources of the individual rcaps. Each of the aggregated
rcaps must have the same time window. This argues for choosing standard time
intervals.

2.4 Imposing Policy

The node manager is the ultimate regulator of how many resources are available to
specific slices, regardless of which resources are actually bound to the slice. There
are a number of possible reasons why a slice may receive less than the expected
quantity of resources.

Many nodes are donated by parties that have specialized usage restrictions on
their equipment beyond those imposed by the general PlanetLab usage agreement.
These nodes may impose limits on slice behavior and even blacklist slices or even
principals. For example, a service used as a pornography distribution mechanism
may be legal and accepted at some sites but not at others. In such cases nodes have

6



D
R

A
FTthe right to isolate their resources from certain services. It is in the best interest

of restrictive sites to widely advertise their limits, because it avoids the overhead
of services acquiring resources for nodes they would be unable to use and the pos-
sibility that those resource may fall idle. Policy may be enforced at either the
granularity of principals or slices.

In addition to persistent node usage policies, the node manager supports tempo-
rary disciplinary action. When software in any slice belonging to some principal
violates resource usage agreements, either that specific slice or all slices of that
principal can be potentially targeted for temporary restrictions. These restrictions
may be tailored to meet the specific problem using the flexibility of the rspec datas-
tructure.

The node manager makes the following operations for slice resource usage control
available through infrastructure services:

limit(principal_id set, slice_id set, rspec)
unlimit(principal_id set, slice_id set)

The set arguments in the limit operation are used to indicate which slices should be
affected by upper usage limits described in the rspec. The sets may be empty, a list,
or a wildcard to indicate the universal set. The operation will affect the maximal set
of slices described by the arguments. The unlimit operation removes any previous
limits on a specific set of principals and slices.

Both limit and unlimit are infrastructure service only operations because deciding
which principals may affect which slices is a policy decision.

2.5 Inspection and Logging

All invocations of node manager operations are logged to a persistent storage lo-
cation visible to all slices along with a timestamp and the slice id of the caller.
If storage resources for logging are exhausted, the node manager will not accept
additional transactions.

In addition to the log, the node manager makes internal state about slices available
to all local slices with the following operation:

inspect(principal_id set, slice_id set) ->
(principal_id, slice_id, respchain, rspec) list

The set arguments are treated similarly to those of the limit operation and state is
returned for all matching slices. The respchain

7



D
R

A
FT2.6 Infrastructure Service Optimizations

Certain scenarios may arise where the reissue node manager operations may be
invoked so often as to present an overhead burden. One example is in a very liquid
resource market where rcaps change hands many times due to speculation before
they are finally bound to a slice. Assuming that the node manager is contacted for
each transaction to reissue, and possibly even more often to merge and split rcaps to
create new commodities, the resulting message traffic volume may be undesirable.

There are a number of solutions to optimize this communication. One alternative is
to have a trusted party acquire and hold rcaps, this allows the items traded be rcap
references. This strategy adds a layer of indirection, a common systems approach.
Another approach is to build a cryptographic security and trust infrastructure for
rcap transfer.

2.7 Interface Summary

The initial node manager implementation is visible as an XML-RPC server listen-
ing on a well known TCP port. The operations it supports and and explanation of
argument structure follows.

Node manager operations:

bind(slice_id, rcap)
reissue(rcap) -> rcap
split(rcap, rspec list) -> rcap list
merge(rcap list) -> rcap
inspect(principal_id set, slice_id set) ->

(principal_id, slice_id, rspec) list

Available only to infrastructure services:

acquire(rspec) -> rcap
limit(principal_id set, slice_id set, rspec)

Datatypes:

principal_id : 32 bit opaque value
slice_tag : XXX bit opaque value
slice_id : (principal_id, slice_tag)
rcap : 128 bit opaque value
time : 64 bit natural number // seconds since the epoch

8



D
R

A
FTrspec :

(time_start : time, time_end : time, priv list)
priv :

vm_upper_bound(count) |
vm_resvn() |
outbound_ip_bandwidth_upper_bound(ip_addr_set, bps) |
outbound_ip_bandwidth_resvn(ip_addr_set, bps) |
outbound_ip_bandwidth_prop_share(ip_addr_set, share) |
inbound_ip_bandwidth_upper_bound(ip_addr_set, bps) |
inbound_ip_bandwidth_resvn(ip_addr_set, bps) |
inbound_ip_bandwidth_prop_share(ip_addr_set, share) |
ip_flows_upper_bound(ip_addr_set, count) |
ip_flows_resvn(ip_addr_set, count) |
ip_flows_prop_share(ip_addr_set, share) |
outbound_ip_flows_upper_bound(ip_addr_set, count) |
outbound_ip_flows_resvn(ip_addr_set, count) |
outbound_ip_flows_prop_share(ip_addr_set, share) |
inbound_ip_flows_upper_bound(ip_addr_set, count) |
inbound_ip_flows_resvn(ip_addr_set, count) |
inbound_ip_flows_prop_share(ip_addr_set, share) |
udp_ports_disallow(int_set) |
udp_ports_prop_share(share) |
udp_ports_resvn(int_set) |
tcp_ports_disallow(int_set) |
tcp_ports_prop_share(share) |
tcp_ports_resvn(int_set) |
fd_upper_bound(count) |
fd_prop_share(share) |
fd_resvn(count) |
disk_space_upper_bound(kb) |
disk_space_prop_share(share) |
disk_space_resvn(kb) |
memory_pageable_upper_bound(kb) |
memory_pageable_prop_share(share) |
memory_pageable_resvn(kb) |
memory_pinned_upper_bound(kb) |
memory_pinned_resvn(kb) |
cpu_upper_bound(percentage) |
cpu_prop_share(share) |
cpu_resvn(percentage)

9



D
R

A
FTip_addr_set : [CIDR-prefix or ip_addr] list

count : integer
bps : integer // bits per second
share : integer // units of virtual currency
int_set : [integer or integer range] list

// eg (1, 3-5, 7-9, 88, ...)
kb : integer // kilobytes
percentage : integer // 0-100

3 PlanetLab Central Infrastructure Service

PlanetLab Central (PLC) is the first service to run on a node after bootstrap, and it
maintains an active slice on all nodes of the system. This section serves both as a
specification of the PlanetLab Central service, and as an example use of the node
manager interface.

The PLC service will leverage existing infrastructure and maintain a central database
of principles, slices, resource allocations, and policies. Each node will host a slice,
specific to the PLC service, which facilitates VM management and resource al-
location by issuing requests to the underlying node manager. Analogous to soft-
ware updates, each PLC resource manager will periodically poll a central database,
downloading a file with the latest node state update information, and perform ap-
propriate actions (e.g., create/delete slice, bind resources to slice, etc.). This ap-
proach is simple, provides clear benefits, is based on a well-known solution, and
will serve as a concrete point of reference for competing systems in the future both
in terms of robustness and performance.

3.1 Principals and Accountability

The PLC service will leverage the existing infrastructure for managing principals
and providing accountability. PLC principals are users who have been authenti-
cated out of band by PlanetLab central and have signed the PlanetLab Acceptable
Use Policy agreement, corresponding to existing PIs.

To review existing mechanisms, all users must register their identity and upload
an SSH public key through the PlanetLab web site. Users are either principle in-
vestigators (PIs) associated with contributing PlanetLab sites or users who work
under a principle investigator. Users authenticate themselves using a login and a

10



D
R

A
FTpassword. PIs may authorize users to access a slice by associating the user’s SSH

public key with the desired slice, thereby enabling access to all of the slice’s nodes.
All authorization decisions are made through the PlanetLab web site and delegated
based on a hierarchy of responsibility. PlanetLab central directly authorizes prin-
ciple investigators. Each principle investigator, in turn, authorizes local users (e.g.,
graduate students) and assumes responsibility for them.

Leveraging PlanetLab central provides two key benefits. First, it allows us to build
an initial resource management system that provides useful functionality and is
as simple as possible. Second, it allows us to leverage an existing infrastructure
for managing principals and delegating authorization that has worked quite well to
date. We will use the existing authorization hierarchy to authorize all privileged
actions in the resource management system. These actions include creating slices,
deleting slices, assigning principals to slices, and partitioning global PlanetLab
resource allocations, of which each site gets a fraction of the total pool.

3.2 Dynamic Slice Creation and Maintenance

Dynamic slice creation will be controlled centrally through the PlanetLab web site.
Users will authenticate themselves using their login and password. Once authenti-
cated, principals are able to create slices, or authorize other users to do so on their
behalf.

The web interface will provide each user with accounts and currency they can use to
acquire resources. Initially, each user will have two accounts, one which tacks vir-
tual machine rights tokens and another for proportional share credits. Credits and
tokens will be added to the accounts of principals at regular time intervals, based
on an undisclosed algorithm which tries to provide each principal with resources
commensurate to their contributions to PlanetLab. These contributions might be
based on factors such as providing valuable shared services, hardware or software
contributions, and adherence to the PlanetLab acceptable usage policy. Credits and
tokens expire if they are not used.

To create a slice using the web interface, a user must allocate one virtual machine
token for each node to be included in the slice. The user must then allocate propor-
tional share credits to each resource category to indicate what share of the user’s
resource rights are to be available to that slice. Once such a token and credit alloca-
tion has occurred, it will persist and new tokens and credits will be used to sustain
the slice as they become available.

11



D
R

A
FT3.2.1 Hierarchical Proportional-Share Resource Allocation

In addition to using tokens and credits to create slices, users may transfer them
to be used by others. Principles at each site can divide their initial allocations in a
hierarchical proportional-share fashion. The proportional-share hierarchy will mir-
ror the authorization hierarchy already stored in PlanetLab central’s user database.
In addition, at each node of the hierarchy, a user can assign some fraction of its
resource assignment to its slices. For example, a given principal might allocate
30% of its allocation to its slices and allocate a 70% proportional-share allocation
to users authorized by that principal. Each node in the hierarchy essentially creates
a new currency, similar to those used in lottery scheduling [7].

Hierarchical, proportional-share scheduling will initially be applied to both CPU
and network bandwidth. Longer term, we could extend this to other scarce re-
sources such as physical memory (e.g., using Waldspurger’s min-funding revoca-
tion algorithm [8]) if need be. During contention, proportional-share scheduling
allows sites to obtain resource allocations commensurate to their contributions to
PlanetLab. Of course, we do not expect all principals to always be using their en-
tire resource allocations all the time. Proportional-share scheduling allows these
unused allocations to be used by active services, thereby improving utilization.
Adding hierarchical scheduling provides additional control which preserves the
compensation for valuable contributions. For example, a user at a site that makes
valuable contributions to PlanetLab can obtain that entire site’s allocation if all
other users from that site are idle.

3.3 Administrative Policies

The PLC web interface will provide administrators with access to the policy en-
forcement mechanisms at each node. PlanetLab administrators will be able to set
policies for nodes, slices, and principals that apply to resources allocated by all
resource management systems. This interface will be similar to that provided by
the node manager limit operation, extended to allow specification of which nodes
to target.

This policy interface will be available to all users, providing them with disciplinary
control over their own slices. Administrators are granted additional scope over all
slices at specific sites or the entire network to match their domain of responsibility.

Example policies on nodes might include upper bounds on the amount and type of
network traffic a node can generate. Policies on slices might include limits on what

12



D
R

A
FTslices are capable of doing, such as whether they can send ICMP ping packets.

Finally, policies on principals might include limits on what a particular principal
can do in general. For example, there might be a policy that states that a particular
principal (and all users below that principal in the associated user hierarchy) can
only create slices that send traffic to nodes within PlanetLab.

3.4 Periodic Node Synchronization

PLC resource managers will periodically poll PlanetLab central for the latest slice,
resource allocation, and policy information. This information will be generated
on a per-node basis, either dynamically (e.g., using PHP) or by distributing a set
of files (e.g., named by node IP address). Each PLC resource manager will ob-
tain this information over HTTPS by downloading a signed, timestamped file that
contains all the necessary information for all slivers on that particular node. This
information includes a list of slivers that should be present on the node, hierar-
chical resource allocation information for each sliver, and policy information at the
node, slice, and principal level. For each sliver, the resource manager will then take
the sliver’s resource allocation, apply relevant policies, and obtain an appropriate
capability which is then bound to a sliver.

In the future it may be desirable to use a content distribution service, such as
CoDeeN to distribute node state.

3.5 Node Directory Service

In addition to being the authority on principal identities, PLC also maintains a
directory of nodes and assigns each a node id value that is independent of any
transport addresses. Each node is assigned an effectively random 128 bit opaque
value. This namespace strategy is chosen for ease of administration.

For each node id, the PLC node directory will store a host of addressing informa-
tion, including a list of IP addresses, a globally unique text name (e.g., ’node05’),
a site name, GPS information, an organization name, network connectivity info, a
country code, etc. Queries against this directory are made available based on all
fields, allowing for human-friendly specification of nodes. Changes to info can be
uploaded by a node during synchronization.

This directory addresses problems arising from nodes having dynamic IP addresses
or being multi-homed. It is expected that services will be created to route based on

13



D
R

A
FTnode id information. This will address problems with nodes behind NATs, if the

routing service is clever enough to create outbound tunnels from the NATed region.

3.6 Virtual Machine Management

Virtual machine management and resource allocation will be based on vservers [6]
and SILK. Each node will run a node manager which performs privileged VM
management and resource allocation operations on behalf on higher-layer resource
management systems. Requests to the node manager will be driven by a a per-node
PLC resource manager. Each PLC resource manager will make requests to the node
manager based on a file periodically downloaded from PlanetLab central. Included
in this file is a list of slivers that should exist on the node, their proportional-share
resource allocations, and policy information.

3.7 Node Manager Interaction

Each PLC resource manager will periodically obtain a capability from the node
manager for a course-grain resource allocation in space and in time. Using the in-
formation from PlanetLab central, it will then carve this capability up into multiple
capabilities based on the desired hierarchical proportional-share resource alloca-
tions. These capabilities are then bound to slices, which may need to be dynami-
cally created if they did not already exist.

3.8 Slice Accessibility

As before, access to slices is still done using SSH. Since PlanetLab central knows
about all slices in this scheme, we will continue to rely on the existing SSH key
distribution mechanism to distribute and assign SSH keys to slices. However, un-
like the existing system, each slice runs a private sshd, and a slice bootstrap script
queries the local PLC slice to determine which keys are assigned to the slice. This
allows the PLC service to use an unprivileged vserver.

To simplify slice access for users, the web interface will provide a summary of
access information for each slice. This will include information on which ports on
each node host the SSH daemon. To further simplify this process PLC will also
provide a user tool (a wrapper around SSH) to hide these complexities from the user
entirely and allow access based on slice names and human-friendly information
stored in the node directory.

14



D
R

A
FT3.9 Motivation

The centralized resource allocation scheme is simple and provides five key bene-
fits over the existing resource allocation scheme on PlanetLab. First, it provides
a rudimentary form of dynamic slice creation. Second, it provides a means for
implementing policy for hierarchical, proportional-share resource allocations in a
delegated manner. Third, it provides PlanetLab administrators control over re-
source usage at the node, slice, and principal level. Fourth, it allows the underlying
resource capability architecture to be exercised in a production setting. Finally, it
provides a graceful transition path for introducing new functionality based on the
current infrastructure. We believe that these benefits combined with the simplicity
of the proposed design outweigh the set of features not provided by this scheme.
Such features include fully decentralized control, free trading of resource capabili-
ties, and so forth. We envision that competing/experimental resource management
systems will emerge to address these needs. In the meantime, the centralized allo-
cation scheme will provide useful service and provide a concrete point of reference
for competing systems in the future.

3.10 Expected Evolution

The PLC system, as described above is intended to provide a simple but usable
interface to the new node manager functionality and resulting dynamic slice archi-
tecture. Once this platform has been successfully deployed, the PLC system will
be improved in a number of ways.

3.10.1 Resource Reservations

The initial system provided reservations only for basic virtual machine state. Pro-
viding access to the full expressiveness of the node manager rspec datastructure
will require additional mechanisms for initial resource distribution.

Once possible mechanism is to create a virtual currency that can be used to pur-
chase reservations. The difficultly with this solution is determining appropriate
pricing for resources. An alternative solution is to distribute all resource capabil-
ities based on the current distribution algorithm, and allow users to trade them to
procure desired slice configurations. Both of these approaches are complex.

15



D
R

A
FT3.10.2 Resource Capability Trading Support

To aid in deployment of resource markets, the central bank may provide trusted
third party transaction support. If two parties wish to exchange resource capabili-
ties for credits, the bank can participate in the transaction to prevent fraud. It can
do this by being trusted by both parties to hold both the credits and the capabili-
ties, contact the corresponding node managers to reissue the capabilities, and then
complete the transaction. This would require the PLC making the node manager
rcap data available to users during slice creation.

3.10.3 Efficient Secure Control Plane Overlay

To facilitate communication between virtual machines in the PLC slice, the service
will create persistent SSH/TCP tunnels for XML-RPC request forwarding. For
robustness this tunnel topology may be redundant. This infrastructure would allow
for simple communication with nodes behind NAT domains.

Once this infrastructure is in place, the PLC service could allow other services to
utilize it. The PLC can allow other slices to forward XML-RPC requests and to
register their own XML-RPC servers. Other services may choose to use PLC for
this for efficiency reasons, both because communication connection setup time is
much lower to use the already established PLC tunnels, and because other resource
such as port numbers and TCP state can be leveraged.

3.10.4 Distributed Database

Having a centralized management system has poor failure properties and is lim-
ited in scalability. Ultimately we expect that the PLC services becomes a truly
distributed service, existing only within a slice and not using outside resources.

4 Example: SHARP

A second example of a resource management system that lives on the baseline ar-
chitecture is SHARP [3]. SHARP is a distributed resource management architec-
ture that allows agents, which represent sites, to exchange computational resources
in a secure, fully decentralized fashion. The cornerstone of SHARP is a secure ar-
chitecture for representing, validating, and delegating cryptographically protected

16



D
R

A
FTresource claims across a network of resource managers. SHARP also introduces

mechanisms for controlled, accountable oversubscription of resource rights as fun-
damental tool for dependable, efficient resource management. In SHARP, agents
engage in pairwise resource peering as the basis for a secure, decentralized barter-
ing economy [1]. Resources allocated by SHARP are discovered using an external
resource discovery system (e.g., Sophia [9], PIER [4], etc.). Resources are then
obtained through pairwise bartering using a secure resource routing protocol.

4.1 Principals and Accountability

Principals in SHARP will be identified using X.509 certificate chains and authen-
ticated using the SSL protocol. Principals will trust one or more certificate author-
ities (CAs), each of which is the root of a public key hierarchy. Initially, PlanetLab
central will be the sole trusted CA and the resulting public key hierarchy will have
the same structure as the one used in the centralized resource allocation scheme
(Section 3.1). There, PlanetLab central asserts the identity of principles investiga-
tors and principle investigators, in turn, assert the identity of students and assume
responsibility for their actions. In the centralized scheme, asserting identity and
assuming responsibility translated into authenticating with the PlanetLab web site
and performing associated actions. Here, analogous actions are performed in a de-
centralized fashion with principals issuing X.509 certificates for principals whose
identities they assert and actions they are taking responsibility for.

Accountability for improper resource use will be achieved through chains of re-
sponsibility and logging of every privileged action. In our implementation, chains
of responsibility will be X.509 certificate chains. The interpretation of a principal�

issuing an X.509 certificate for a principal � is that (i)
�

asserts that � ’s true
identity and contact information is the information in the certificate and (ii) that

�

is assuming responsibility for � ’s actions on PlanetLab. A public key hierarchy
represents a hierarchy of these relationships. In a SHARP-based system, princi-
pals will perform privileged actions (e.g., creating a slice) by first authenticating
themselves with the SSL protocol. For every privileged action performed, a times-
tamped log entry will be created with the associated principal’s X.509 certificate
chain and the action performed.

A concrete example of how identity and accountability will interact in practice is
dynamic slice creation. In SHARP, resources are obtained in a completely decen-
tralized fashion and bound to dynamically created slices. Since this requires no
coordination with PlanetLab central, extra mechanisms are needed in order to map
a misbehaving sliver of a particular slice back to a responsible principal’s identity

17



D
R

A
FTand contact information. All resource managers that live on top of the baseline ca-

pability system must be able to perform this mapping. In the centralized scheme,
this mapping is straightforward since knowledge of slice to principal mappings are
stored on PlanetLab central, which can be queried. In the SHARP case, there is
no central entity to be queried. However, the necessary information is still read-
ily available since timestamped logs are kept of all privileged actions performed
by associated principals. In this instance, mapping a sliver back to a principal is
achieved by simply reading a log file.

4.2 Secure Resource Peering

Agents engage in peering relationships by periodically exchanging resource claims.
A claim is an unforgeable assertion that grants the holder of the claim access to spe-
cific resources (the resource set) over a specific time interval (the term). In SHARP,
agents peer by exchanging tickets, soft claims that suggest but do not guarantee re-
source ownership. Tickets can then be redeemed for leases, hard claims over con-
crete resources that are valid for the term of the lease unless a failure occurs. In the
proposed implementation, two types of tickets and leases will be supported. The
first type corresponds to hierarchical, proportional-share resource allocations; the
second type corresponds to reservations on hard resource allocations. Both tickets
and leases are self-certifying, self-describing delegations of resource privilege in
space and time and can be delegated arbitrarily between principles.

Tickets and leases can be implemented over capabilities in a relatively straightfor-
ward manner. Here, SHARP resource managers running on each node periodically
will obtain a capability for a course-grain resource allocation in space and time.
To support exchange of both proportional-share and hard resources in SHARP, a
capability for each resource type would be obtained from the node manager. These
capabilities are then passed to the site’s SHARP agent which then issues tickets
against these capabilities to peer with its neighbor agents. To redeem a ticket
for a lease, a principal authenticates itself with the appropriate SHARP agent and
presents the ticket. Upon successfully validating the ticket, the SHARP agent then
communicates with a SHARP node manager to carve off a concrete resource allo-
cation by taking an unused capability and splitting into two capabilities, the first
corresponding to the resource allocation for the lease, the second corresponding to
the rest of the original capability’s allocation. The first capability would later be
bound to a target slice.

To make the previous discussion concrete, suppose we have an agent
�

that peers
with ten other agents: ����� ������������� ��	
� ���� . Suppose that each agent represents a sin-

18



D
R

A
FTgle node site, that all resources are dedicated to the hard allocation pool, and that all

resources are managed by SHARP. In this case, each SHARP resource manager on
each node would periodically obtain a capability for 100% of the node’s resources
(for some large time interval) from the the node manager. This capability would
then be passed to the site’s SHARP agent, which would issue tickets against this ca-
pability to its peers. For example,

�
might partition its resources evenly across all

its peers and issue 10 tickets, each for 10% of its resources, to � � � � � �������
� � 	 � � �� .
��� obtains a lease at

�
by presenting its ticket to

�
.

�
, having one big unused

capability for 100% of its resources, would then split that capability into two ca-
pabilities, a 10% capability to back the lease and a 90% capability to handle future
ticket redemptions. The 10% capability would subsequently get bound to a target
slice.

SHARP makes a distinction between tickets and leases to allow for oversubscrip-
tion. Oversubscription allows an agent to issue more tickets than it has physical
resources for. Oversubscribed claims can benefit resource utilization by statistical
multiplexing, and support replicated tickets to limit the damage from resource loss
if an agent fails or becomes unavailable. For tickets corresponding to hard resource
allocations, oversubscription is implemented by issuing more tickets than there are
physical resources and by rejecting claims when conflicts occur. For tickets cor-
responding to proportional-share resource allocations, oversubscription for utiliza-
tion is implemented by simply issuing a fixed set of tickets for the proportional-
share pool and letting the underlying proportional-share scheduler ensure that the
resources are fully utilized. As with the hard allocation case, the SHARP resource
manager must detect duplicate use of the same ticket resource sets (e.g., redeeming
the same ticket twice).

4.3 Secure Resource Routing Protocol (SRRP)

Resources in SHARP are obtained through a two-phase process. First, resources of
interest are found using an external resource discovery service. Second, pairwise
bartering is done for desired resources at target sites. For resource discovery, we as-
sume the existence of a resource discovery system which accepts resource queries
as input and returns query results as output. In the case of SHARP, query results
include both the set of nodes matching the resource query as well as addresses for
associated agents that are responsible for issuing tickets for those nodes. Once tar-
get agents have been identified, pairwise bartering is done to each agent to obtain
tickets for the desired resources. For each target agent, there could be multiple
bartering paths from the source trying to acquire the resources and the destination

19



D
R

A
FTagent that has the desired resources. Each path consists of a sequence of directed

edges, each of which specifies both an exchange rate and a capacity.

SHARP uses a Secure Resource Routing Protocol (SRRP) to both announce bar-
tering paths and to securely route requests for tickets along bartering paths. Path
information is disseminated using a secure link-state routing protocol and used to
construct a routing table at each agent which stores lowest cost bartering paths to
each destination agent. We define cost as the the number of tickets the source has
to relinquish in order to obtain tickets at the destination agent. We define capacity
on each edge (

�
, � ) as the number of � tickets that can be obtained through

�
.

We expect that routing based on lowest cost paths are likely to be the common case.
Lowest cost routing with simple constraints are also likely to be common. Routing
with constraints is desirable for using cheap routes that avoid specific agents that
are faulty, malicious, or unresponsive.

Pairwise bartering along a bartering path is done using source-based routing to
allow agents to route bartering requests along paths of least cost. Pairwise bartering
along a path is done using the tickets obtained as a result of peering relationships.
For example, if

�
peers with � , � peers with � , � peers with � , ..., and � peers�

,
�

obtains tickets from Z through a sequence of pairwise bartering towards
�

and a sequence of delegations back to
�

. Towards
�

,
�

hands B a set of B tickets,
B hands C a set of C tickets, and so on. The end-to-end bartering exchange rate
from

�
to
�

is the product of the pairwise exchange rates. Once the
�

tickets have
been obtained, the

�
tickets are then delegated back to

�
along the reverse path.

Once obtained, these delegated
�

tickets can then be directly redeemed by
�

to
obtain a lease.

A key benefit of SHARP’s approach to bartering is that it allows resource exchange
between arbitrary agents while avoiding ���	� ��
 exchange rates, a well-known lim-
itation in bartering economies. It achieves this through a combination of pairwise
resource peering and sequences of pairwise bartering along minimum-cost routes
from source agents wanting resources to destination agents that have desired re-
sources. The implication of this is that the system has much better scaling prop-
erties. It also significantly lowers the barrier to entry for new sites wanting to
contribute and share resources in PlanetLab. New sites only have to reason about
exchange rates with a (potentially small) subset of sites in PlanetLab to begin par-
ticipating in the bartering economy.

SRRP uses a combination of cryptographically-signed receipts and witnesses (i.e.,
similar to mix-net routing in Free Haven [2]) to handle cases where pairwise bar-
tering fails due to faulty, malicious, or unresponsive agents. Through source-based
routing, the source already has some control over the path a request is routed over.

20



D
R

A
FTHowever, making this work in practice requires that each agent on the path is both

available and behaving properly. In the event that an agent along the path does not
have these properties, we would like to be able to identify at which point along
the route the routing request failed and to have some indication as to why it failed.
For example, when routing from

�
to

�
, suppose � drops the request and simply

uses the tickets it obtained from � to barter for its own advantage. By requiring
timestamped, signed receipts accepting responsibility at each hop, � could present
a copy of this receipt to A, which might subsequently avoid � in the future as a
result. Having observed � ’s behavior, � may also wish to avoid routing through

� in the future. Given persistent bad behavior from � , � might even stop peering
with � altogether.

Initially, tickets used for peering and routing will represent shares of resources at
a particular site. Each agent will issue tickets for a set of nodes and represent
aggregate node resources as a set of shares. These shares will subsequently be
packaged up as tickets and exchanged as part of peering. For example, an agent
issuing tickets for three nodes might represent these nodes as 300 shares with each
node’s resources contributing 100 shares and where each share corresponds to 1%
of a node’s CPU, memory, network, and disk resources. A key benefit of view-
ing shares this way is that exchange rates can then be represented as scalars and
standard graph algorithms can be used to compute optimal paths. A potential disad-
vantage with this approach is resource fragmentation since resource requests must
scale up across all resources. Redeeming tickets for leases on specific nodes is
done by sending the ticket (representing some number of shares) and a mapping of
the ticket’s shares to a set of nodes. It is up to the requester to pick an appropriate
mapping based on resource discovery information.

4.4 Dynamic Slice Creation

Dynamic slice creation in SHARP is achieved by obtaining leases on target nodes
and by binding the resources associated with those leases to a newly created slice.
Tickets on target nodes will be obtained using the bartering mechanisms previously
described. These tickets will then redeemed for leases, which are then sent as part
of a dynamic slice creation request to the nodes that will comprise the slice. With
respect to the underlying capability architecture, SHARP agents will maintain the
mappings of SHARP leases to capabilities. When a lease is initially allocated, so
is the capability, but it is unbound to a particular slice. Note that these leases could
then be potentially resold in a market for computational resources. Only when a
slice creation request is received does the capability get bound to a specific slice.

21



D
R

A
FTLeases can also be bound to existing slices (i.e., to implement lease renewal for a

long-lived slice).

Authorization to create slices could be implemented using additional certificates.
We have implemented a rudimentary trust management system that allows certifi-
cates which delegate arbitrary privilege to be expressed and verified based on a
security policy. As an alternative, we could instead always allow principals to cre-
ate slices (modulo limits on the node) as long as there is a chain of responsibility.
The upside of this approach is that it avoids extra certificates. The downside is
that it makes it harder to express certain types of policy (e.g., only PIs and their
immediate underlings can create slices). As with the centralized scheme, we rely
on slice names that are tuple of a principal id and an XXX bit slice tag. Here, the
principal id might be the principal ID of the SHARP resource management sys-
tem and the XXX bit slice tag might be constructed using the SHA1 hash of the
requesting principal’s public key and a name in that principal’s local slice names-
pace. Principals would authenticate with the SHARP resource manager to prove
they have the private key that allows use of their part of the slice namespace.

4.5 Administrative Policies

As with the centralized scheme, administrators at PlanetLab central will be able
to set policies on nodes, slices, and principals that apply to resources allocated by
all resource management systems, including SHARP. Policies on nodes and slices
will be implemented as before. Policies on principals will be slightly different,
depending on the implementation. One possibility is that we require the public key
hierarchy to be known and apply policy that way. Another is that we require a com-
pletely separate policy infrastructure for principals based on PKI. The advantage of
the first approach is that policy could still be centrally applied to principals at any
level of the PKI hierarchy. One possible approach here would be to have a service
that allows certificates to be registered and to require that all certificates on a chain
be registered before authenticating a principal. A simple example of such a service
would be a web-based registration service (e.g., using the existing web accounts)
combined with centralized distribution of a list of SHA1 hashes of all registered
certificates.

4.6 VM Management and Resource Allocation

Virtual machine management and resource allocation will be based on vservers
and SILK. Each node will run a node manager that performs privileged VM man-

22



D
R

A
FTagement and resource allocation on behalf of higher-layer resource management

systems. Requests to the node manager will be driven by a per-node SHARP re-
source manager and a per-site SHARP agent on each node. Virtual machine man-
agement will be similar to the PlanetLab central approach, the key difference being
that decisions to create, delete, and manage slices will be based on requests from
service managers (e.g., run by individual users), as opposed to a file downloaded
from PlanetLab central. SSH public keys will be installed as part of dynamic slice
creation by sending the set of authorized keys to SHARP resource managers for
all nodes in the slice. SHARP resource managers can then be queried by node
managers when running slice bootstrap scripts to set up SSH access.

5 Implementation

The implementation will consist of several pieces whose implementation can pro-
ceed largely in parallel. Working bottom-up, these pieces include:

� Hierarchical proportional-share scheduling layer (acb)

� Node manager and resource capabilities layer (tspalink)

� Resource specification language for prop-share/reservations (scott)

� PlanetLab central resource management system (tspalink)

� SHARP resource management system (bnc, fu)

Note that the assignment of names to the different pieces above is just an approxi-
mation.

5.1 Schedule

The implementation schedule is shown in Table 1.

Contributors

This document includes contributions by Andy Bavier, Mic Bowman, Paul Brett,
Yun Fu, Larry Peterson, Timothy Roscoe, Amin Vahdat, and Mike Wawrzoniak.
This document was derived from PDN-02-005.

23



D
R

A
FTDate Milestone

Jul 18 Draft of this document. Send out for feedback.
Jul 25 Interfaces for components, simple resource specification language.
Aug 1 Simple tests written for VM mgnt, sched, nodemgr, capabilities.
Aug 4 Node manager and resource capabilities layer.
Aug 4 Hierarchical prop-share CPU and network bandwidth.
Aug 4 SHARP prototype (no integration w/ node manager).
Aug 11 Refine resource specification language.
Aug 11 PlanetLab central resource allocation (dynamic slice creation + keys).
Aug 11 SHARP prototype (integration w/ node manager, testing).
Aug 18 PlanetLab central resource allocation (add hierarchical prop-share).
Aug 18 Per-slice TCP/UDP ports and IP tables.
Aug 25 PlanetLab central resource allocation (add node/slice/principal policies).
Aug 25 SHARP prototype (optimizations, full decentralization).
Sep 1 Testing and bug fixes.
Sep 8 Deploy PlanetLab central resource allocation.

Table 1: Implementation Schedule.

planetlab-slices@lists.sourceforge.net.

References

[1] B. Chun, Y. Fu, and A. Vahdat. Bootstrapping a distributed computational
economy with peer-to-peer bartering. In Proceedings of the 1st Workshop on
Economics of Peer-to-Peer Systems, June 2003.

[2] R. Dingledine, M. J. Freedman, and D. Molnar. The free haven project: Dis-
tributed anonymous storage service. In Proceedings of the Workshop on De-
sign Issues in Anonymity and Unobservability, July 2000. Updated December
2000.

[3] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. Sharp: An architecture
for secure resource peering. In Proceedings of the 19th ACM Symposium on
Operating System Principles, October 2003. To appear.

[4] M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo, S. Shenker, and I. Stoica.
Complex queries in dht-based peer-to-peer networks. In Proceedings of the 1st
International Workshop on Peer-to-peer Systems, March 2002.

24



D
R

A
FT[5] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system

design. ACM Transactions on Computer Systems, 2(4):277–288, 1984.

[6] Solucorp. Virtual private servers and security contexts (http://www.
solucorp.qc.ca/miscprj/s_context.hc), 2003.

[7] C. A. Waldspurger and W. E. Weihl. Lottery scheduling: Flexible proportional-
share resource management. In Proceedings of the 1st USENIX Symposium on
Operating Systems Design and Implementation, pages 1–11, 1994.

[8] C. A. Waldspurger and W. E. Weihl. An object-oriented framework for mod-
ular resource management. In Proceedings of the 5th International Workshop
on Object Orientation in Operating Systems, pages 138–143, October 1996.

[9] M. Wawrzoniak. Sophia knowledge plane (http://www.cs.
princeton.edu/˜mhw/sophia), 2003.

25


