PlanetLab: A Blueprint for Introducing Disruptive Technology into the Internet

Larry Peterson
Princeton University / Intel Research
PlanetLab vs Grid

• The Grid is the next generation supercomputer

• PlanetLab is the next generation Internet
Innovator’s Dilemma

• The Internet is an enormous success story
 – commercially
 – impact on our daily lives
 – global reach
• Success has an unexpected cost: *ossification*
 – difficult to deploy disruptive technologies
 ▪ correct vulnerabilities
 ▪ introduce new capabilities
Today’s Internet

Best-Effort Packet Delivery Service

Limitations
- the Internet is “opaque” making it difficult to adapt to current network conditions
- applications cannot be widely distributed (typically split into two pieces: client and server)
Tomorrow’s Internet

Collection of Planetary-Scale Services

Opportunities

– multiple vantage points
 - anomaly detection, robust routing
– proximity to data sources/sinks
 - content distribution, data fusion
– multiple, independent domains
 - survivable storage
Berkeley: OceanStore

RAID distributed over the whole Internet
Intel: Netbait

Detect and track Internet worms globally
Washington: ScriptRoute

Internet Measurement Tool
Princeton: CoDeeN

Open Content Distribution Network
Evolving the Internet

• Add a new layer to the network architecture
 – overlay networks
 ▪ purpose-built virtual networks that use the existing Internet for transmission
 ▪ the Internet was once deployed as an overlay on top of the telephony network

• Challenge
 – how to innovate & deploy at scale
The Story so Far

• The Internet is a tremendous success, but…
 – the architecture has fundamental limits
 – its very success makes it hard to change

• The research community is teeming with innovative planetary-scale services
 – exploit multiple points-of-presence throughout the net

• Overlays offer an attractive way to introduce disruptive technology into the Internet, but…
 – there is a high barrier-to-entry
PlanetLab is...

Goal of 1,000 widely-distributed machines
- today: 185 machines, 75 sites, 16 countries
- at edge sites and network cross-roads
PlanetLab is…

A common software package

• Main components
 – Linux kernel w/ extensions to support isolation
 – bootstrapping and software distribution mechanisms
 – collection of *unbundled management* services

• Collectively support distributed virtualization
 – run many overlay networks simultaneously
 – each service (overlay) runs in a *slice* of PlanetLab’s global resources
Slices
PlanetLab is...

A test-bed for experimenting with network services

- 120+ active research projects
- Advantages
 - experiment at scale
 - experiment under real-world conditions
 - potential for real workloads and users
PlanetLab is…

A deployment platform

• Continuously-running services
 – CoDeeN content distribution network (Princeton)
 – Sophia distributed query processing engine (Princeton)
 – PIER distributed query processing engine (Berkeley)
 – ScriptRoute network measurement tool (Washington)
 – NetBait worm detection service (Intel)
 – Chord scalable object location service (MIT, Berkeley)
 – OceanStore storage system (Berkeley)
PlanetLab is…

A microcosm of the next Internet

• Fold services back into PlanetLab
 – evolve core technologies to support overlays and slices

• Examples
 – Sophia used to monitor health of PlanetLab nodes
 – Chord provides scalable object location

• Long-term goals
 – develop open protocols and standards
 ▪ allow federation of public & private “PlanetLabs” to co-exist
 – discover common sub-services
PlanetLab is…

A research community

• Started as a grass-roots effort
 – 35 researchers gathered in March of 2002
 – Intel provided seed funding
 – self-organized into five working groups

• Next Phase: Academic/Industrial Consortium
 – hosted by Princeton (w/ Berkeley and Washington)
 – build-out and operate the infrastructure
 – lower the barrier to entry for research and teaching
Software Architecture

- Support distributed virtualization
 - *slice*: a network of virtual machines
 - multiple services run concurrently (some long-lived)
 - deploy version i of PlanetLab on version $i+1$

- Per-Node Components
 - create and isolate virtual machines

- Global Components (Services)
 - create slice across a set of nodes
 - monitor node health
 - routing underlay
Per-Node Components

• Node Manager
 – responds to requests to create a virtual machine
 – defines spec for VM
 ▪ resources consumed
 ▪ network name space consumed
 – performs admission control
• Vserver: virtualizes at system call interface
 – each vserver runs in its own security context
 ▪ private UID/GID name space
 ▪ limited superuser capabilities (e.g., no CAP_NET_RAW)
 – uses `chroot` for file system isolation
 – scales to hundreds of vservers per node
Per-Node (cont)

- **plkmod**: kernel module that enforces VM isolation
 - processor and link scheduling
 - virtualizes the network
 - safe raw sockets
 - port-space isolation
 - address space sandboxing

- **Sensors**: uniform interface to node status info
 - HTTP-based
 - core set + user-defined

- **Admin Slice**: local admin control
 - set bw limits
 - run tcpdump
Creating Slices

• Two-stage process
 – discover available resources
 ▪ use monitoring service
 – create virtual machine on each selected node
 ▪ contact broker for rights to resources (receive tickets)
 ▪ contact node manager to redeem tickets
 ▪ node manager implements admission control

• Status
 – prototypes of mechanisms
 – simple policies in the near-term
 – create a market for resources in the long-term
Monitoring Services

• Serve several purposes
 – discover/select resources for a slice
 – monitor node/network health
 – measure/monitor Internet activity

• Exploit sensors
 – local state + local view of the network

• Multiple services being built
 – Sophia: distributed Prolog engine
 – PIER: distributed SQL query processor
 – IrisNet: XML-based queries
 – service-specific mechanisms (e.g., CoDeeN)
Routing Underlay

Overlay Services

Library of Routing Services
 • k-disjoint paths
 • k-nearest neighbors

Topology Probing Layer
 • peering graph
 • path from x to y
 • latency from x to y

Raw Topology Information
 • local BGP feed
Current Institutions

<table>
<thead>
<tr>
<th>Institution</th>
<th>Institution</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academia Sinica, Taiwan</td>
<td>Princeton University</td>
<td>University of Kansas</td>
</tr>
<tr>
<td>Boston University</td>
<td>Purdue University</td>
<td>University of Kentucky</td>
</tr>
<tr>
<td>Caltech</td>
<td>Rensselaer Polytechnic Inst.</td>
<td>University of Maryland</td>
</tr>
<tr>
<td>Carnegie Mellon University</td>
<td>Rice University</td>
<td>University of Maryland</td>
</tr>
<tr>
<td>Chinese Univ of Hong Kong</td>
<td>Rutgers University</td>
<td>University of Massachusetts</td>
</tr>
<tr>
<td>Columbia University</td>
<td>Stanford University</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>Cornell University</td>
<td>Technische Universitat Berlin</td>
<td>University of North Carolina</td>
</tr>
<tr>
<td>Datalogisk Institut Copenhagen</td>
<td>The Hebrew Univ of Jerusalem</td>
<td>University of Pennsylvania</td>
</tr>
<tr>
<td>Duke University</td>
<td>University College London</td>
<td>University of Rochester</td>
</tr>
<tr>
<td>Georgia Tech</td>
<td>University of Arizona</td>
<td>USC / ISI</td>
</tr>
<tr>
<td>Harvard University</td>
<td>University of Basel</td>
<td>University of Technology Sydney</td>
</tr>
<tr>
<td>HP Labs</td>
<td>University of Bologna</td>
<td>University of Tennessee</td>
</tr>
<tr>
<td>Intel Research</td>
<td>University of British Columbia</td>
<td>University of Texas</td>
</tr>
<tr>
<td>Johns Hopkins</td>
<td>UC Berkeley</td>
<td>University of Utah</td>
</tr>
<tr>
<td>Lancaster University</td>
<td>UCLA</td>
<td>University of Virginia</td>
</tr>
<tr>
<td>Lawrence Berkeley Laboratory</td>
<td>UC San Diego</td>
<td>University of Washington</td>
</tr>
<tr>
<td>MIT</td>
<td>UC Santa Barbara</td>
<td>University of Wisconsin</td>
</tr>
<tr>
<td>Michigan State University</td>
<td>University of Cambridge</td>
<td>Uppsala University, Sweden</td>
</tr>
<tr>
<td>National Tsing Hua Univ.</td>
<td>University of Canterbury</td>
<td>Washington University in St Louis</td>
</tr>
<tr>
<td>New York University</td>
<td>University of Chicago</td>
<td>Wayne State University</td>
</tr>
<tr>
<td>Northwestern University</td>
<td>University of Illinois</td>
<td></td>
</tr>
</tbody>
</table>

September 15, 2003
More Information

www.planet-lab.org