
1

Monitoring & Management

(Distributed Query Processing)

2October 6, 2003

Internet-Scale Querying

• Large scale
– thousands to millions of nodes

• Imprecise results
– non-serializable
– latency
– packet loss
– node / link failure

• No single schema
– system evolves in decentralized manner
– multiple sources in multiple domains

3October 6, 2003

Internet Queries (cont)

• Highly dynamic queries
– non-static, change over time

– large number of users

– spatial parallelism

• Query optimization highly data-dependent
– can be optimized at query-time

4October 6, 2003

Applications

• Large system management

• Network measurement

• Enhanced file sharing services

• Planetary-scale sensor networks

• Mobility services

• Etc.

5October 6, 2003

Systems Management

• Data Sources / Sensors

• Distributed Query Processing

• Distributed Logging

• Data Visualization

• Machine Learning

• Remote Actuation

6October 6, 2003

Models

• Hierarchical: IrisNet, Astrolabe
– establish single hierarchy in advance (XML)

• Inference-based: Sophia
– completely freeform (Prolog)

• Relational: PIER
– schema (sort of), late-bound query plan (SQL)

• Others?

7October 6, 2003

Managing PlanetLab

Today
• Observe

– central pull of data every 5 minutes

• Analysis
– post-processing (lots of pearl scripts)

– human in the loop

• React
– email & rsh

8October 6, 2003

Managing PlanetLab

Sophia
• Observe

– sensors produce facts

– facts move to where needed

• Analysis
– Prolog rules

• React
– actuators

9October 6, 2003

Sensors

• Organized into Sensor Servers
– kernel stats
– network probes
– software configurations
– service-specific

• Access locally
– via HTTP

• Two types
– snapshot
– streaming

10October 6, 2003

Sophia Expressions
• Evaluate an expression at some point in

time/space

eval(when, where, exp)

– when: future, past, now, last, event
– where: specific node

• Unification
– find a fact that makes the expression true

eval(time(now), node(42), load(L))

– evaluation results asserted in fact database
ß time/place-stamped

11October 6, 2003

Simple Examples
eval(time(now), node(42), (load(L), L<0.7))

true(time(1049246673), node(42), (load(0.5), 0.5<0.7)

eval(time(now), node(42), (load(L), L<0.4))

false(time(1049246673), node(42), (load(L), L<0.4)

eval(time(now), node(42), (load(L), L<0.7))

maybe(time(1049246673), node(42), (load(L), L<0.7)

eval(time(now), node(42), (load(L), L>10), react(…))

12October 6, 2003

Examples (cont)
eval(time(now), bagof([L, N],
 (node(N),
 eval(time(now), node(N), (load(L), L<0.7))),
 Vs)
).

true(time(1049246673),…
[[37, 0.5], [42, 0.4], [55, 0.6]]))).

13October 6, 2003

Components

Logic Terms
Database

Local
Unification

Engine
Remote

Evaluator
Expression
Scheduler

S S S… A A A…

Distributed
Unification

Engine

Application
Module

(e.g., Mgmt)

Library
ModuleLibrary

ModuleLibrary
ModuleLibrary

Module

Sophia Core

14October 6, 2003

Design Issues

• Performance
– expression parallelization
– caching (logging)
– Scheduling (pre-fetching)
– query planning
ß query rewriting
ß introspection (rewrite on the fly)

• Failures
– accommodate holes

15October 6, 2003

Issues (cont)

• Extensibility
– privilege ‡ capabilities

cap3527519(Val) :- read_bw_sensor.
Bandwidth(BwVal) :- cap3527519(BwVal).

– module composition
ß protect private modules with capabilities

ß publish public module names

16October 6, 2003

Advantages

• Declarative language
– natural way to express desired properties/behavior
– permits efficient implementation
– decouples what from how

• Easy to extend at runtime
– supports evolving management tools
– promise of introspection

• Explicitly exposes…
– where ‡ transparently distribute expressions
– when ‡ both past (logging) and future (events)

17October 6, 2003

PIER

• Relational model / query language
– actually, a query plan right now

• Use a DHT substrate
– rehashing

– rendezvous

– multicast

– aggregation

18October 6, 2003

Relational Queries

• Data is tuples in named tables
– tables exist on nodes

• Relational operators:
– selection

– projection

– join:
ß correlate, intersect, match

– aggregation:
ß summarize, compress

19October 6, 2003

Symmetric Hash Join

• Goal: get tuples with same join key to same node

• Each node:
– scans data for join candidates

– stores tuple in DHT with hash(join key)

• Hash nodes send matches data to query origin

20October 6, 2003

Symmetric Hash Join
Source
Nodes

Hash
Nodes

Result
Node

Local JoinSelect, Project
And Hash

Collate

