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Abstract 

The render ing equat ion is s imilar  to the  l inear  Bo l t zmann  
equat ion which has been widely s tud ied  in physics  and  nu- 
clear engineering. Consequently,  many  of  the  powerful  tech- 
niques which have been developed in these fields can be 
appl ied  to problems  in image synthesis.  In  this  pape r  we 
a d a p t  several s ta t i s t ica l  techniques commonly  used in neu- 
t ron  t r anspo r t  to s tochast ic  ray  t rac ing and,  more  generally, 
to Monte  Carlo solut ion of the  render ing  equat ion.  F i rs t ,  we 
descr ibe a technique known as Russian roulette which can 
be  used to t e rmina t e  the  recursive t rac ing of  rays  wi thout  
in t roducing  s ta t i s t ica l  bias.  We also examine the pract ice  
of creat ing ray  trees in classical ray  t rac ing  in the  light of  a 
well-known technique in particle transport known as split- 
ting. We show tha t  ne i ther  ray  trees nor pa ths  as descr ibed 
in [10] cons t i tu te  an op t ima l  sampl ing  p lan  in themselves 
and  tha t  a hybr id  may  be  more  efficient. 

CR Categories and Subject  Descriptors: 1 .3 .7 -  
[Computer G r a p h i c s ] :  Three-Dimens iona l  Graphics  and 
Realism; 1 . 3 . 3 - - [ C o m p u t e r  G r a p h i c s ] :  P i c t u r e / I m a g e  
Generat ion;  
General  Terms: Algor i thms,  Graphics  
Addit ional  Key  Words and Phrases~ BoI tzmann  equa- 
tion, Monte  Carlo,  par t ic le  t r anspor t ,  radiosi ty,  r ay  t racing,  
rendering equation.  

1 Introduction 

The render ing equat ion [10] provides a f ramework in which 
aLl current  image synthesis  techniques can be be viewed as 
me thods  of approx imat ion .  Bo th  radios i ty  [7] and  ray  t rac-  
ing [18] are examples  of  app rox ima t ion  because  they  neglect 
various opt ical  phenomena  in order  to  yield a reasonable  
me thod  of solution. A n  a l te rna t ive ,  in t roduced  by  Kaj iya ,  
is to solve the  render ing equat ion  di rec t ly  via  Monte  Carlo 
techniques s imilar  to those developed for neu t ron  t r anspor t  
problems.  Such techniques have a long h is tory  and have 
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been applied to integral equations of essentially the same 
form as the rendering equation since the 50's [1]. 

Kajiya demonstrated the feasibility of this approach in 
image synthesis by successfully solving the rendering equa- 
tion for scenes including both specular and diffuse reflectors. 
Though the level of realism attainable in this way is very 
high, the cost can be prohibitive due to slow convergence of 
the Monte Carlo method. Other more efficient approaches 
have been devised [16,17] but none have completely obvi- 
ated the need for stochastic approximation without sacrific- 
ing certain modes of light transport. 

Related statistical approaches have been applied to ray 
tracing. Cook, et al. [4] described a stochastic sampling 
technique termed distributed ray tracing which provides a 
means of anti-aliasing as well as simulating effects such as 
motion blur, penumbrae, depth of field, and fuzzy reflec- 
tions. Its central idea is that features in the environment 
which vary in time and space can be sampled stochastically 
to estimate their contribution to the final image. Both of 
these paradigms have a great deal in common with Monte 
Carlo techniques applied to particle transport problems in 
other fields. 

2 Particle Transport 

The  class of  particle transport problems consists of those 
problems  which seek to  character ize  the  d i s t r ibu t ion  of  ide- 
al ized par t ic les  t ak iug  account  of their  mo t ion  and  inter-  
ac t ion wi th  a m e d i u m  [5,12,19]. Such problems  appea r  in 
nuclear  engineering as neu t ron  t r anspo r t  [15], in hea t  t rans-  
fer as photon transport [13], and in semiconductor device 
simulation as carrier transport [6]. Many of the equations 
governing these transport processes ultimately derive from 
the Boltzmann equation which arose from the kinetic theory 
of gases. In  i ts s implest  form the  l inear  Bo l t zmann  equat ion  
can be wr i t t en  as 

• (P) = S(P) + f K(P' --~ P) q,(P') de' (I) 
Jfl 

where P represents  par t ic le  posi t ion,  direct ion,  and  energy, 
and ~(P) is the density of radiation at P due to emission 
from the source S as well as contributions scattered into 
P from all P' [11]. The function K is known as the scat- 
teeing kernel, and the domain of integration, ~, consists of 
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all positions, directions~ and energies. This is a notoriously 
difficult equation to solve analytically in all but  the most  
trivial problem instances [2,5]. This is true of the rendering 
equation as well which is essentially a variant of the linear 
Bol tzmaun equation. The principal difference is tha t  the 
scattering kernel is rephrased as a geometry term, g~ which 
accounts for occlusion and inverse square at tenuation,  and 
a trivariate scattering term, p, whose arguments  are sur- 
face points (See [10]). The latter encodes the directions of 
incidence and reflection implicitly through the positions of 
the source and destination elements relative to the point of 
reflection. The similarity of the rendering equation to the 
linear Bol tzmann equation suggests tha t  many  of  the power- 
ful techniques which have been developed for other particle 
t ranspor t  problems may be applied to problems in image 
synthesis. 

We note tha t  there are several aspects in which the ren- 
dering equation is somewhat more t ractable than  the trans- 
port  equations in fields such as nuclear engineering. 

1) The particles (i.e. photons) do not influence one another,  
alter the environment,  carry a charge, or replicate via 
fission. Thus scattering is independent of • as well as 
external forces, making the equation linear. 

2) In the absence of  part icipating media, collisions occur 
only at surfaces. The particles therefore have a rela- 
tively large mean free path.  

3) We seek only the steady state solution, not transient 
distributions on the way to equilibrium. 

These properties manifest themselves largely in the rela- 
tively simple form of the scattering kernel which is com- 
prised of the bidirectional reflectance functions associated 
with the surfaces. After probabilistically determining a new 
particle direction at each scattering event the next col].ision- 
site along the random walk is completely determined, elim- 
inating stochastic distance calculations. However, there are 
two respects in which this t ranspor t  process is made more 
d i~cul t  than  typically encountered in other disciplines. 

First,  the geometry of the simulated environments can 
be arbitrarily complex. While simulations of reactor  cores 
and semiconductor devices benefit f rom fairly constrained 
geometries and exploit special properties of lattices, cylin- 
ders, slabs, etc. [12], the t rend in computer  graphics is to 
move toward greater and greater scene complexity. This 
is exemplified by recent work involving billions of geomet- 
rical primitives [14]. This can be further complicated by 
t ime-dependent scene geometry. Simulation of the resulting 
mot ion  blur requires time averaging steady-state  solutions 
at intermediate scene configurations. 

Secondly, the problem of interest in image synthesis is to 
compute  the intensity of i l lumination impinging on a single 
point, the "eye", through small apertures which correspond 
to "pixels". Analogous situations occur in reactor shield- 
ing problems which simulate point  radiat ion detectors [3]. 
These are inherently more diiBcnlt to solve than the typical 
problems which involve flux averages over volumes. 

Many impor tant  problems in particle t ranspor t  do not 
admit  analytic solutions and are also prohibitively expensive 
to solve via numerical integration due to the high dimension 
of the phase space in which they operate (e.g. three spa- 
tial dimensions, two directional dimensions, and an energy 
dimension). The only recourse for solving these types of  
problems appears to be Monte Carlo methods which track 

the behavior of large numbers of particles obeying the pre- 
scribed laws of mot ion expressed as scattering probabilities. 
Each particle undergoes a sequence of collisions or scatter- 
ing events which probabilistically alter its t ra jectory at each 
collision-site and contribute to the history of the particle. 
Each particle history, or random walk, is used as a statistical 
est imator of average case behavior. Ray  tracing is a mecha- 
nism for comput ing points of collision, and a stochastic ray 
pa th  [10] is the resulting random walk of  a particle. The 
rendering equation provides a link which allows us to view 
image synthesis in terms of particle t ransport .  Through  this 
connection we can gain useful insight into the features and 
limitations of image synthesis techniques. 

For example, consider the use of decoupled passes of  ray 
tracing and radiosity to model specular and diffuse modes 
of  t ranspor t  independently. It  has been observed that  sim- 
ply combining the results of these passes fails to account  
for some impor tant  phenomena of  geometrical optics [16]. 
The most  obvious example is a caustic formed by specularly 
t ransmi t ted  or reflected light falling on a diffuse surface. 
Both  classical ray tracing and radiosity total ly neglect this 
mode o£ transport ,  therefore this deficiency cannot be reme- 
died by summing their contributions a posteriori. Wallace 
describes a solution for this part icular  case of specular-to- 
diffuse t ransport ,  but  it is impossible to account for all such 
sequences of t ranspor t  as special cases. This phenomenon 
has been observed in other linear t ransport  problems and 
is a t t r ibuted  to the fact tha t  equation 1, though linear in 
the source term, S, is nonlinear with respect to the scat- 
tering kernel, K .  While the linearity in S allows us to sum 
the independent  contributions made by different sources and 
wavelengths of light, the analogous decoupling fails when the 
kernel is par t i t ioned into, for example, Kspec +Kdiff. A faith- 
fnl simulation of  all modes of  t ransport  can only be achieved 
by coupling them in the solution process. 

3 Russian Roulette 

The albedo of a surface is the probabil i ty tha t  an incident 
particle will be re-radiated after collision [3]. In Monte Carlo 
simulations this probabil i ty is normally used to adjust  a nu- 
merical weight associated with the particle rather  than  prob- 
abilistically terminat ing the history. This technique, te rmed 
implicit capture [12], has bet ter  statistical properties owing 
to longer particle histories. 

A proper ty  of implicit capture is tha t  particle histories 
can only terminate at surfaces of zero albedo or by leakage, 
tha t  is, by escaping the system. However, it is nearly always 
impractical  to continue tracing a pa th  until one of  these 
conditions is met. Even if we could guarantee the eventual 
terminat ion of every history, we would spend an inordinate 
amount  of time comput ing collisions involving particles of  
negligible weight. One solution is to place a limit on the 
number  of  scattering events in a particle history and to ig- 
nore all contributions beyond this point. A bet ter  solution 
is to use weight cuto~ which truncates  the particle 's history 
only when its weight falls below some threshold [12]. The 
idea of using weight cutoff to terminate  ray tracing recursion 
was introduced by Hall [8] and termed adaptive tree depth 
control. Both  of  these techniques are commonly employed 
in ray tracing implementat ions in order to avoid excessively 
deep ray trees and, in extreme cases, even unending recur- 
sion due to opposing mirrors or total  internal reflection. The 
difficulty with this type of policy is tha t  t runcat ion intro- 
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i f  w e i g h t  < T h r e s h  t h e n  
b e g i n  
sample s uniformly from [0, 1] 
i f  s < .P t h e n  terminate path 
e lse  w e i g h t  e -  we igh t~ (1  - P )  
e n d  

Figure 1: The Russian Roulette algorithm which is used to ter- 
minate particles with insignificant weights without introducing 
bias. The value P can be any probability less than 1. 

duces a systematic bias to the est imator  which may become 
significant if applied to a large number  of paths.  

Fortunately,  this bias can be el iminated by a simple tech- 
nique known as Russ ian  roulette [3,12,15]. According to this 
technique, once the weight of a particle has fallen below a 
pre-defined threshold we terminate its history probabilisti- 
cally, with some given probability, P. If the particle "sur- 
vives," its weight is increased by a factor of 1/(1 - P). Let 
w denote the weight of a particle before playing Russian 
roulette and let the random variable W denote its subse- 
quent weight. The expected value of W, denoted E(W), is 
then  given by 

E ( W )  = Prob( t e r m i n a t i o n  ) • 0 + 
113 

Prob( surv i va l  ) * 1--~- ff  (2) 

But  the probabil i ty of t e rmina t ion  is P ,  and  that  of survival 
is 1 - P ,  so we have 

W 
P * 0  + ( l - P ) *  1 - P  - w (3) 

which is the the original weight of the particle. On  average, 
then,  the particle will have the appropriate  weight. We may 
therefore ignore the major i ty  of the insignificant particles 
by artificially inflating the contr ibut ions  of those which sur- 
vive. Although el iminat ing the bias in this way does in  fact 
increase the variance slightly, if applied to particles of suf- 
ficiently low weight this can be more t han  compensated for 
by the addit ional  samples we can collect for the same overall 
cost. Perhaps more important ly ,  e l iminat ing the bias guar- 
antees tha t  we will converge to the correct result  in  the l imit  
if the sample mean  converges at all. The Russian Roulet te  
algori thm is outl ined in figure 1. 

4 Splitting: Paths vs. Trees 

Another technique which is commonly used to improve the 
efficiency of particle transport simulations is splitting. While 
Russian roulette reduces the number of scattering events 
at the expense of a slight increase in variance, the goal of 
splitting is to reduce variance by introducing more scatter- 
ing events. It works by partitioning a single particle into 
a multiplicity of particles, tracking their diverging histories 
independently, then down weighting their contributions ap- 
propriately. In reactor simulations splitting is used when a 
neutron encounters a region which is particularly important 
or of high sensitivity. Though tracking many light weight 

particles is costly, it is justified if the variaucc is reduced 
sufficiently. Because it is used strictly as a variance reduc- 
tion technique and not as a means of simulating fission, it is 
applicable to photon transport as well. 

In the classical approach to ray tracing introduced by 
Whitted [18], a single ray can recuxsively spawn a multiplic- 
ity of rays at surfaces which both reflect and transmit light 
specnlarly. Cook, et al. [4] generalized this approach by 
replacing the deterministic branching steps by probabilis- 
tic ones distributed over spatial and temporal dimensions. 
Through the generality of Monte Carlo integration, this al- 
lowed a wider variety of optical effects to be simulated with 
the same number of samples. The resulting method of prob- 
abilistic branching is essentially an application of splitting. 

As Kajiya observed, however, this approach creates un- 
necessarily bushy ray trees and expends most of the effort 
at the leaves (higher generation rays) which make only a 
small contribution [10]. Though Russian roulette (Sec. 3) 
can help to limit the depth of these trees by terminating 
low-weight branches fairly, it does not in itself reduce the 
bushiness of the tree. Kajiya suggests that it is more ap- 
propriate to trace paths instead of trees. At each collision 
event, exactly one ray is followed by probabilistically choos- 
ing one scattering mode to sample from; for example, either 
the reflected or the transmitted light. 

We can compare the two approaches using the figure of 
merit [12] or efficiency [11] of the resulting estimators. This 
measure, which we shall denote by ~, is defined by 

1 
- ( 4 )  

i f 2  T 

where 0.~ is the variance of the est imator  and  ~- is the cost 
associated with drawing a single sample. In this case a sam- 
ple consists of a complete particle history. At each collision 
event we wish to sample the incident illumination in such a 
way that the entire estimator is as efficient as possible. The 
idea behind path tracing is to use a single particle, thereby 
reducing v, which includes the cost of tracing each ray in 
the envkonment .  This cost can be considerable for complex 
environments .  On the other hand,  averaging many  particle 
histories leads to an est imator  with a smaller variance, 0 "2. 
Are there any situations in which this reduction in variance 
outweighs the cost of tracking multiple particle histories? 
Though it is difficult in general to estimate both ~- and 0.2 
for any given strategy, we can nevertheless construct exam- 
ples in which splitting confers a clear advantage. 

Consider a particle which encounters N ideal mirror re- 
Rectors before reaching a diffuse reflector. If we estimate 
the incident illumination at the diffuse surface by tracing a 
single path, obtaining a variance of o-1 z at a cost v, then the 
efficiency of the entire estimator is 

1 
el  - 0.~(No~ + r )  (5) 

where a is the average cost of tracing a single ray in the 
environment. On the other hand, if we achieve a slightly 
lower variance, 2 a,~, by splitting into m paths of the same 
cost after tracing a single path to the diffuse reflector then 
the efficiency of the entire estimator is 

1 
~ = 0 .~ (Na + mr)  (6) 

To see that  spl i t t ing can be advantageous in some instances 
we need only observe that  
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N~o¢ el o'~ > 1 (7) 

This shows that  for any given a and v, after a sufficiently 
large number of mirror reflections splitting into multiple 
paths is a more efficient strategy than continuing a single 
path. 

Another instance in which splitting is advantageous is 
when multiple samples reduce the variance significantly. 
More precisely, if at any point along a path  we can employ m 
samples of equal cost to estimate the incident illumination 

2 such that  and achieve a variance O'm 

~ m  < - -  ( s )  
m 

where o-12 is the variance of a singe sample, then em > el and 
we have an increase in el~iciency. Under certain conditions, 
such a reduction in variance can be obtained through sample 
stratification, a common Monte Carlo technique in which 
the domain of integration is parti t ioned into disjoint regions 
which are sampled independently. 

If  the incident illumination at a surface point can be 
separated into low-variance s t ra ta  whose mean values differ 
greatly, then splitting into one pa th  for each s t ra tum will 
result in a more efficient estimator [9]. Two strata  which will 
often meet these criteria are the intense direct illumination 
from light sources and the at tenuated indirect illumination 
from the remainder of the environment [10]. 

While ray trees generally place too much of the compu- 
tational burden at the leaves, these examples indicate that  
there exist cases in which trees lead to greater efficiency 
than a strict application of pa th  tracing. This suggests that  
a hybrid method can achieve higher efficiency than  either 
strategy alone if inexpensive heuristics for strategy selection 
are employed. 

5 Conclusion 

As the level of realism in computer generated images has 
grown, the underlying illmnination models have encountered 
many of the complications common to other particle trans- 
port problems. This is not surprising when one views the 
rendering equation as a form of the linear Boltzmann equa- 
tion, a t ransport  equation which has application in many ar- 
eas of science and engineering. We can exploit this similarity 
by drawing upon techniques developed for other transport  
problems and applying them to image synthesis. Fields such 
as nuclear engineering are rich sources of statistical tech- 
niques which are applicable to stochastic ray tracing and 
to Monte Carlo solution of the rendering equation. As ex- 
amples, we have discussed the uses of Russian roulette and 
splitting in this context. Finally, because image synthesis 
presents additional challenges due to features such as com- 
plex scene geometry, techniques developed for image synthe- 
sis may also be useful in other domains. 

References 

[1] Albert, G. E., "A general theory of stochastic estimates 
of the Neumann series for solution of certain Fredholm 
integral equations and related series," in Symposium on 
Monte Carlo Methods, edited by M. A. Meyer, J. Wiley, 
New York 1956, pp. 37-46. 

[2] Cercignani, Carlo, "The Boltzmann Equation and its 
Applications," Springer-Verlag, New York, 1988. 

[3] Clark, Francis H., "Methods and data for reactor shield 
calculations," in Advances in Nuclear Science and Tech- 
nology, No. 5, 1971, pp. 95-183. 

[4] Cook, Robert L., Thomas Porter, and Loren Carpenter, 
"Distributed Ray Tracing," Computer Graphics, 18(3), 
July 1984, pp. 137-145. 

[5] Duderstadt,  J. J., and W. R. Martin, "Transport  The- 
ory," J. Wiley, New York, 1979. 

[6] Ferry, D. K., "Semi-Classical Boltzman Transport  The- 
ory in Semiconductors," in Physics of Nonlinear Trans- 
port in Semiconductors, New York, 1979. 

[7] Coral, Cindy M., Kenneth E. Torrance, Donald P. 
Greenberg, and Bennett Battaile, "Modeling the interac- 
tion of light between diffuse surfaces," Computer Graph- 
ics, 18(3), July 1984, pp. 213-222. 

[8] Hall, R. A., and D. P. Greenberg, "A testbed for realistic 
image synthesis," IEEE Computer Graphics and Applica- 
tions, 3(10), November, 1983, pp. 10-20. 

[9] Hammersley, J. M., and D. C. Handscomb, "Monte Carlo 
Methods," Chapman and Hall, 1964. 

[10] Kajiya, J. T., "The Rendering Equation," Computer 
Graphics, 20(4), August 1986, pp. 143-150. 

[11] Kalos, M. H., and Paula A. Whitlock, "Monte Carlo 
Methods, Volume I: Basics," J. Wiley, New York, 1986. 

[12] Lewis, E. E., and W. F. Miller, Jr., "Computational  
Methods of Neutron Transport ," J. Wiley, New York, 
1984. 

[13] Siegel, Robert ,  and John R. Howell, "Thermal  Radia- 
tion Heat Transfer," Hemisphere Publishing Corp., Wash- 
ington DC, 1981. 

[14] Snyder, John M. and Alan H. Barr, "Ray Tracing Com- 
plex Models Containing Surface Tessellations," Computer 
Graphics, Vol. 21, No. 4, July 1987, pp. 119-126. 

[15] Spanier, Jerome, and Ely M. Gelbavd, "Monte Carlo 
Principles and Neutron Transport Problems," Addison- 
Wesley Publishing Company, 1969. 

[16] Wallace, John R., Michael F. Cohen, and Donald P. 
Greenberg, "A two-pass solution to the rendering equa- 
tion: a synthesis of ray-tracing and radiosity methods," 
Computer Graphics, 21(4), July 1987, pp. 311-320. 

[17] Ward, Gregory J., Francis M. Rubinstein, and Robert  
D. Clear, "A Ray Tracing Solution for Diffuse Interreflec- 
tion," Computer Graphics, 22(4), August 1988, pp. 85-92. 

[18] Whitted, Turner, "An Improved Illumination Model for 
Shaded Display," Communications of the ACM, 32(6), 
June 1980, pp. 343-349. 

[19] Williams, M. M. R., "Mathematical  Methods in Parti- 
cle Transport Theory," J. Wiley, New York, 1971. 

65 


