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Problem Set 8 Solutions 
 

Problem 1: 
 
Let SPACE1(f(n)) and SPACE2(f(n)) be the space complexity classes for the single and 
two-tape models respectively.   
 
Let M be a single-tape Turing machine.  We can construct a two-tape Turing machine 
with the same space bound - the machine simply copies the input to the work tape, 
returns the head to the beginning of the work tape, and then simulates M. 
 
For the other direction, let M be a two-tape Turing machine.  The equivalent single tape 
machine uses the first n tape positions to hold the input and the rest of the tape as a work 
tape.  Special markers are used to indicate the head position in each tape, and the Turing 
machine updates both tapes as required.  The single tape machine uses space O(n+f(n)), 
which is O(f(n)) since f(n) is at least linear. 
 
Problem 2: 
 
Player two has a winning strategy.  Player one's only first move is 2.  After player two 
chooses 4, player one can only choose 5.  Player two then wins after player two chooses 6. 
 
Problem 3: 
 
We give a coNPSPACE machine that recognizes EQREX.  Convert each regular expression 
into an equivalent NFA.  An NFA with n states has an equivalent DFA with 2n states.  
Furthermore, two different DFA's with at most 2n states can be run in parallel with 22n 

states.  Therefore, they will differ on some input of length less than 22n+1.  (If they differ 
on an input of greater length, we can pump down by the LCM of the two pumping 
lengths).  We can maintain a counter running from 1 to 2n^2 in polynomial space.  For 
each time step, we nondeterministically guess the next input symbol, simulate both NFAs 
with this next input symbol, and increment the counter, accepting if the two NFAs 
disagree.  Since coNPSPACE = PSPACE, we are done. 
 
Problem 4: 
 
STRONGLY-CONNECTED is in coNL = NL.  We co-nondeterministically select each 
vertex pair and run the PATH algorithm, accepting if there is a path between all pairs. 
 
Given an instance <G, s, t>, we add a directed edge from each vertex to s and from t to 
each vertex.  This requires only log space since we need only count through the number 
of vertices.  If a path existed from s to t, the output is strongly connected (all vertices 



connected through a path containing s and t).  If no path exists, then there is no path from 
s to t in the output, and the graph is not strongly connected. 
 
 


