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Problem Set 7 Solutions 
 

Problem 1: 
 
We show that P is closed under the star operation by dynamic programming.  Let A be 
any language in P, and let M be the TM deciding A in polynomial time.  The following 
procedure decides A*. 
 
ST = "On input w = w1w2… wn: 
 1.  If w is the empty string, accept. 
 2.  Initialize T[i, j] = 0 for 1 ≤ i ≤ j ≤ n. 
 3.  For i = 1 to n, 
 4. Set T[i,i] = 1 if w1 is in A. 
 5.  For l = 2 to n, 
 6. For i = 1 to n - l +1, 
 7.    Let j = i + l - 1, 
 8.  If wi… wj is in A, set T[i,i] = 1. 
 9.  For k = i to j - 1, 
 10.   If T[i,k] = 1 and T[k,j] = 1, set T[i,j] = 1. 
 11.  Accept if T[1,n] = 1; otherwise reject." 
 
Each stage takes polynomial time, and ST runs for O(n3) stages, so the algorithm runs in 
polynomial time. 
 
Problem 2: 
 
Initialize the permutation p to the identity.  Read t from left to right, one bit at a time.  If 
the current bit is 0, assign p = pp.  Otherwise, let p = ppq.  Since composition is 
associative, the end result is pt.  The algorithm runs in O(klog(t)) time, which is 
polynomial. 
 
Problem 3: 
 
(a.)  A ≠-assignment assigns to each clause at least one true literal and at least one 
false literal.  The negation will thus assign to each clause at least one true literal and at 
least one false literal. 
 
(b.) Suppose a clause (y1∨ y2∨ y3) is true.  Then, setting zi = (¬(y1∧y2))∧y3) and b = 0 
gives a ≠-assignment to (y1∨ y2∨ zi) and (¬zi∨ y3∨b). 
 
If (y1,…,yn, z1,…,zm,b) is a ≠-assignment to the reduced problem, then either (y1,…,yn) 
(if b = 0) or its negation (if b = 1) is a satisfying assignment to the original 3SAT problem. 
 



(c.) Since  ≠SAT is in NP (nondeterministically guess an assignment and verify), and 
since a polynomial time reduction exists from 3SAT to ≠SAT, ≠SAT is NP-complete. 
 
Problem 4: 
 
We use the reduction from ≠SAT to MAX-CUT described in the problem, and ask for a 
cut of size (3k)2v+2k.  If a ≠-assignment to the original problem exists, a cut of the 
requested size exists.  Place a node x on the left side of the cut if x is assigned true, and 
place it on the right side if x is assigned false.  All (3k)2 edges of the variable gadgets are 
cut, and since each clause gadget contains a node on each side of the cut, the cut contains 
two edges from each clause gadget. 
 
Conversely, the cut may contain only two edges from each clause gadget, and thus must 
contain all variable gadget edges.  The cut must be of the form specified in the first part, 
and can be transformed to a ≠-assignment to the original problem. 
 
Problem 5: 
 
Let L = { <x, a, b> | x has a factor in the range [a, b]}.  This is clearly in NP, so by 
assumption, this language is in P as well.  The factors of x can then be extracted using a 
binary search. 
 
Problem 7: 
 
The clause (x ∨ y) is logically equivalent to each of the expressions (¬x → y) and (¬y → 
x).  We represent the 2cnf formula φ on the variables x1,…,xn by a directed graph G on 
2m nodes labled with the literals over these variables.  For each clause in φ, place two 
edges in the graph corresponding to the two implications above.  φ is satisfiable iff G 
doesn't contain a cycle containing both xi and ¬xi for some i.  Testing for such a cycle is 
easily done in polynomial time with a depth-first search algorithm. 
 
Problem 8: 
 
First we show that Z is in DP.  Consider the following two languages: 
 
Z1 = {<G1, k1, G2, k2> | G1 has a k1 clique, G2 is a graph, and k2 is an integer > 2} 
Z2 = {<G1, k1, G2, k2> | G2 has a k2 clique, G1 is a graph, and k1 is an integer > 2} 
 
Clearly Z1 and Z2 are in NP, and Z = Z1 ∩ (complement of Z2), so Z is in DP. 
 
To show that Z is complete for DP we need to show that for all A in DP, A is polytime 
reducible to Z.  Let A = A1 ∩ (complement of A2) for NP languages A1 and A2.  By the NP 
completeness of CLIQUE, A1 and A2 are polytime reducible to CLIQUE.  Let f1 and f2 
denote the corresponding polytime reduction mappings.  Then f = (f1, f2) is a polytime 
reduction from A to Z. 
 


