Problem Set 6 Solutions

Problem 1:

(aa/a)(aa/a)(b/a)(ab/abab)

Problem 2:

Suppose $M^{\prime \prime}$ decides $L=\{\langle M\rangle \mid M$ is a TM and M has no useless states $\}$. Let be an instance of an $\mathrm{A}_{\text {TM }}$ problem. Then the following machine decides $\mathrm{A}_{\text {TM }}$, a contradiction.

$$
\begin{aligned}
M^{\prime \prime \prime}= & \text { "On input }\langle M, w\rangle \text { : } \\
& \text { 1. Create } M^{\prime} \text { from } M \text { by adding a transition to and from every state } \mathrm{q}_{\mathrm{i}} \text { in } M \\
& \text { on a new symbol } \mathrm{x}_{\mathrm{i}} . \\
& \text { 2. Run } M^{\prime \prime} \text { on }\left\langle M^{\prime}, \mathrm{x}_{1} \mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{m}} \mathrm{x}_{\mathrm{m}} \mathrm{~W}\right\rangle \text {. Accept if } M^{\prime \prime} \text { accepts." }
\end{aligned}
$$

Problem 3:

Observe that given an instance of PCP over a unary alphabet, a match exists only if there exists a domino with the same number of symbols on the top and bottom (a singleton match) or if there exists a domino with more symbols on the top and another domino with more symbols on the bottom. Constructing a TM which checks these two conditions is straightforward.

Problem 4:

The PCP problem can be reduced to the binary PCP problem, so the binary PCP problem is undecidable. Encode each symbol x_{i} as 01^{i}.

Problem 5:

The reduction works if P has a match iff G is ambiguous. If P has a match $\mathrm{t}_{1} \mathrm{t}_{2} \ldots \mathrm{t}_{\mathrm{n}}=$ $b_{1} b_{2} \ldots b_{n}$, then the string $\mathrm{t}_{1} \mathrm{t}_{2} \ldots \mathrm{t}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}-1} \ldots \mathrm{a}_{1}$ has two different parse trees in G. If G is ambiguous, then some string $\mathrm{t}_{\mathrm{i} 1} \mathrm{t}_{\mathrm{i} 2} \ldots \mathrm{t}_{\text {in }} \mathrm{a}_{\mathrm{in}} \mathrm{a}_{\mathrm{in}-1} \ldots \mathrm{a}_{\mathrm{i} 1}$ has two different parse trees. But any string has only one parse tree from T (by examination of the sequence of symbols a_{i}), and the same holds for B. So the string can be derived from T as well as B, and the sequence $\mathrm{i}_{1} \mathrm{i}_{2} \ldots \mathrm{i}_{\mathrm{n}}$ form the indices of a match of P.

Problem 6:

Let P^{\prime} be P if P contains the TM which rejects all inputs, and let P^{\prime} be he complement of P otherwise. We reduce the Halting Problem to P^{\prime}, showing that P is undecidable in both cases.

Suppose $M^{\prime \prime}$ decides P. Let $<M_{1}>$ be a machine in P. Then the following machine decides the Halting Problem.
$M^{\prime \prime \prime}=$ "On input $\langle M, w\rangle$:

1. Create a new TM M^{\prime} which on input w^{\prime} first simulates M on w and then simulates M_{1} on w^{\prime}.
2. Run $M^{\prime \prime}$ on $\left\langle M^{\prime}\right\rangle$. If M halts on w, then M^{\prime} is identical to M_{1}. Otherwise, M^{\prime} recognizes the empty language. Accept if $M^{\prime \prime}$ accepts."
