
COS 487 
Fall 2003 
 

Problem Set 4 Solutions 
 

Problem 1: 
 
A -> BAB | B | e 
B -> 00 | e 
 
Add a new start symbol. 
S -> A 
A -> BAB | B | e 
B -> 00 | e 
 
Remove e rules. 
S -> A | e 
A -> BAB | B | BA | AB | BB 
B -> 00 
 
Remove unit rules. 
S -> BAB | BA | AB | BB | 00 | e 
A -> BAB | BA | AB | BB | 00 
B -> 00 
 
Convert to proper form. 
S -> BT | BA | AB | BB | CC |  e 
A -> BT | BA | AB | BB | CC 
T -> AB 
B -> CC 
C -> 0 
 
Problem 2: 
 
(a.) Let Mc = (Qc,Sc, Gc, dc, qc, Fc) be a PDA that accepts C, and Mr = (Qr,Sr, dr, qr, Fr) 
be a DFA that accepts R.  Since only one machine uses the stack, we can run the two 
machines in parallel and accept if both accept.  The machine specification is below. 
 
Q = (Qc ( {qrej}) x (Qr ( {qrej}) 
S = Sc ( Sr 
G = Gc 
q = (qc x qr) 
F = (Fc x Fr) 
d((q0, q1), a, a) = {((q, dr(q1, a)), b) | (q, b) œ dc(q0, a, a)} 
d((q0, q1), e, a) = {((q, q1), b) | (q, b) œ dc(q0, a, a)} 
 



 
(b.) Assume A is context-free.  Then, A ' a*b*c* = {anbncn} is also context-free, a 
contradiction.  See Example 2.20 for a proof of this. 
 
Problem 3: 
 
We use a regular grammar to simulate the non-deterministic finite automaton M = (Q, S, 
d, q0, F).  For each state qi œ Q, we create a variable Ai.  The start variable is the variable 
corresponding to the start state.  For each transition d(qi, a) = P, we add a rule Ai -> aAj 
for every qj œ P.  For each accept state qi œ F, we add the rule Ai -> e.  Note that an 
accepting path in Q for a string s corresponds one-to-one with a derivation for the string s 
in the new grammar, so L(G) = L(M).   
 
Problem 4: 
 
Consider the following context-free grammar G: 
 
S -> B1B | B1S   
B -> BB | 0B1 | 1B0 | e  
 
Let L’ be the language of strings with a balanced number of ones and zeroes.  We first 
show that B generates all strings in L’. 
 
L(B) Œ L’: 
A simple inductive argument shows that B generates only strings with a balanced number 
of ones and zeroes. 
 
L’ Œ L(B) (by induction): 
 
Base case:  B generates all strings in L’ of length two or less(01 and 10).   
 
Inductive step:  Consider a string s in L’ of length greater than two.  If s is of the form 
0s’1 or 1s’0, then s’ must be balanced, and by the inductive hypothesis B generates s’, so 
B can generate s.  Otherwise, suppose s is of the form 0s’0.  Let the bias at i be the 
number of zeros appearing in the first i symbols minus the number of ones appearing in 
the first i symbols.  The bias at one is one, while the bias at |s|-1 is negative one.  Thus, 
the bias must be zero for some 0 < i < |s|.  Then, the first i symbols form a balanced 
substring, as do the remaining symbols.  Each substring is of length smaller than |s|, so by 
the inductive hypothesis each is generated by B and s is generated by B->BB. 
 
Problem 5: 
 
Let s = aibjcj be any string in L1, where |s| > 5.  We can always break s = (u)(v)(x)(y)(z) 
into five pieces which satisfy the basic pumping lemma using the following case analysis. 
 
If i < j-1, then s = (aibj-1)(b)(e)(c)(cj-1). 



If i = j-1, then j ¥ 2 (since |s| > 5), and s = (aibj-2)(bb)(e)(cc)(cj-2). 
If i > j-1, then i ¥ 2 (since |s| > 5), and s = (e)(a)(e)(a)(ai-2bjcj). 
 
Problem 6: 
 
(a.): Let G be a CFG for CFL L.  Let b be the maximum number of symbols in the 
right-hand side of a rule.  We may assume that b ¥ 2.  Let |V| be the number of variables 
in G.  We set p to be b|V|+2.  We say that an interior node of the parse tree is structural if at 
least two of its descendants generate a string containing a marked character.  If w œ L has 
at least p marked characters, any parse tree for w will contain a path from root to leaf 
containing at least |V| + 1 structural nodes.  Let t be the parse tree for w with the smallest 
number of nodes.  There exists some path from root to leaf containing at least |V| + 1 
structural nodes.  Thus, some variable R will appear more than once on this path as a 
structural node.  We select R to be a variable that repeats among the lowest |V| + 1 
structural nodes on this path.  Let the upper occurrence of R generate vxy, and let the 
lower occurrence of R generate x.  Both of these subtrees are generated by the same 
variable, so we may substitute one for the other to generate.  This establishes condition 
(a).  Either v or y must have a marked character, since two of the upper occurrence of R’s 
children generate marked characters, and only one of these children generates the lower 
occurrence of R.  This establishes condition (b).  Finally, since the upper occurrence of R 
falls within the bottom |V| + 1 structural nodes on the path, this variable may generate at 
most b|V|+2 marked characters, establishing condition 3. 
 
(b.): Consider the string s = ap+p!bpcp, where all of the b’s and c’s are marked.  We will 
attempt to breaks s into five pieces uvxyz satisfying Ogden’s lemma.  There must be at 
least one marked character in v and y together, so one of the two must contain a “b” or 
“c”.  If either contains an “a”, neither may contain a “c”, since otherwise vxy would have 
more than p marked characters.  But then, since either v or y must contain a “b”, the 
pumped string will contain different numbers of b’s and c’s, a contradiction.  On the 
other hand suppose neither string contains an “a”.  If v and y together contain different 
numbers of b’s and c’s, pumping will yield a string not in the language.  If either v or y 
contains both b’s and c’s, pumping likewise yields a contradiction.  Finally, if v consists 
only of n b’s, n ≤ p, and y consists only of n c’s, n ≤ p, then for i = p!/n, we have a 
contradiction. 


