COS 487, October 8, 2003
Due: October 15, 2003

Homework Set 4

When you submit your solutions, please write down your e-mail address on the first page.
Problem 1: 2.14
Problem 2: 2.17
Problem 3: Let M be a non-deterministic finite automaton. Prove that there exists a regular grammar G such that $L(G)=L(M)$.

Problem 4: Give an explicit context free grammar for the language L which consists of all the binary string w with strictly more 1 's than 0 's. Prove that your construction works.

Problem 5: Let $L_{1}=\left\{a^{i} b^{j} c^{j} \mid i, j \geq 0\right.$ and $\left.i \neq j\right\}$. Show that L_{1} is a language that satisfies the three conditions in the basic pumping lemma given in Theorem 2.19.

Problem 6: (A) Prove the following statement:
Ogden's Lemma For any CFL L, there exists an integer $p>0$ such that the following is true: if $w \in L$ is a string with at least p characters "marked," then w can be written as $w=u v x y z$ satisfying the following conditions:
(a) $u v^{i} x y^{i} z \in L$ for all $i \geq 0$,
(b) v and y together have at least one marked character, and
(c) $v x y$ has at most p marked characters.
(B) Use Ogden's Lemma to show that the language L_{1} (as defined in Problem 5) is not a CFL.

