
COS 487 
Fall 2003 
 

Problem Set 3 Solutions 
 

Problem 1: 
 
(a:)  Variables: R,S,T,X.  Start variable: R. 
(b:)  ab, ba, aab. 
(c:)  a, b, aa. 
(d:)  False. 
(e:)  True. 
(f:)  False. 
(g:)  True. 
(h:)  True. 
(i:)  False. 
(j:)  True. 
(k:)  True. 
(l:)  False. 
(m:)  L(G) contains all strings which are not palindromes. 
 
Problem 2: 
 
(b:)  S -> aSb | bY | Ya 
 Y -> bY | aY | e 
 
(d:) S -> T | Q#T | T#Q | Q#T#Q 
 T -> P | aTa | bTb | # | #Q# 
 P -> a | b | aPa | bPb | e 
 R -> aR | bR | e 
 
Problem 3: 
 
(b:) As long as the next character of the input stream is an “a”, read it and push an “a” 
on the stack.  Then, as long as the next character of the input stream is a “b”, read it and 
pop an element from the stack.  Accept if another “a” is ever read, if we ever try to pop 
from an empty stack, or if all of the input is read and the stack is nonempty. 
 
(d:) Nondeterministically guess if the input contains a palindrome or if the string 
contains xi = xj

R, i ∫ j.  
 
If the PDA guessed that the input contains a palindrome, nondeterministically pick an xk, 
push the symbols of xk onto the stack until nondeterministically guessing that this is the 
midpoint.  Then pop the symbols one by one, comparing them to the input.  Accept if all 
match, the stack empties, no # is read during this procedure, and the next symbol of the 
input is a #.  



 
Otherwise, nondeterministically skip to an xi in the input, and push all of xi onto the stack, 
stopping when a # is read.  Then, nodeterministically skip to a later xj, pop the symbols 
from the stack one by one, and compare them to the input.  Accept if all match, and the 
stack empties. 
 
Problem 4: 
 
(a:) L(G) contains strings which have exactly two # marks, as well as strings which 
contain some number of zeroes, one pound mark, and twice that number of zeroes. 
 
(b:) Suppose L(G) is regular with pumping length p.  Then, applying the pumping 
lemma to 0p#02p shows that 0p+i#02p must also be in L(G) for i > 0, a contradiction. 
 
Problem 5: 
 

 
 
Problem 6: 
 
L(G) is the complement of the language {anbn | n ≥ 0}. 
 
 
 
 
 
 
 
 

e, S->X 

e, X->A 

e, A->S 

start 

loop 

ac 

e, e->S$ 

e, $->e 

e, e->Z 

e, e->A 

e, e->Z 

e, Z->0 
e, A->1 
 



Problem 7: 
 
We give a CFG for this language. 
 
 S -> A1BX | A0CX | D 
 B -> XBX | X#A0 // Left side is 1 in a position where the right side is 0. 
 C -> XCX | X#A1 // Right side is 1 in a position where the left side is 0. 
 D -> R | L | XDX // The strings on either side are of different lengths. 
 L -> X# | XL 
 R-> #X | RX    
 A -> XA | e  // Anything 
 X -> 0 | 1 


