COS 487 Fall 2003

Problem Set 1 Solutions

Problem 1:

Problem 2:

(b:)

(f:)

Problem 3:

 $(b:) 0^* 10^* 10^* 1\Sigma^*$

 $(f:) (0 \cup (10))^* 1^*$

$$(l:) 1^* \cup (1^*01^*01^*)^* \cup (0^*10^*10^*)$$

Problem 4:

For all parts, we assume that A_n is regular with pumping length p, and derive a contradiction.

(a:) Using the pumping lemma on the input $0^{p}1^{p}2^{p}$ shows that $0^{p+n}1^{p}2^{p}$ must also be in A₁ for some n>0.

(b:) Using the pumping lemma on the input $a^p b a^p b a^p b$ shows that $a^{p+n} b a^p b a^p b$ must also be in A₂ for some n>0.

(c:) Using the pumping lemma on the input $a^{2^{n}p}$ shows that $a^{(2^{n}p)+n}$ must also be in A₃ for some p>n>0. But, $2^{p} < 2^{p} + n < 2^{p+1}$, so this string cannot be in A₃.

Problem 5:

If *ADD* is regular with pumping length p, we may apply the pumping lemma to $1^{p}=1^{p}+0$, showing that $1^{p+n}=1^{p}+0$ is in *ADD* for some n>0.

Problem 6:

Observe that any binary string beginning and ending with the same digit has an equal number of occurrences of the substrings 01 and 10. Thus, the following regular expression recognizes D: $\varepsilon \cup 0\Sigma^* 0 \cup 1\Sigma^* 1$.

Problem 7:

Let *A* be the language given by the regular expression $(01)^*0$. Then, $A_{1/3-1/3} = \{(01)^n 00(10)^n | n \ge 0\}$. If p is the pumping length of $A_{1/3-1/3}$, applying the pumping lemma to $(01)^p 00(10)^p$ yields a string which has a pair of consecutive zeroes past the center of the string, a contradiction.