Fall 2003

Problem Set 1 Solutions

Problem 1:

Problem 2:
(b:)

(f:)

(l:)

Problem 3:

(b:) $0^{*} 10^{*} 10^{*} 1 \Sigma^{*}$
(f:) $(0 \cup(10))^{*} 1^{*}$
$(l:) 1^{*} \cup\left(1^{*} 01^{*} 01^{*}\right)^{*} \cup\left(0^{*} 10^{*} 10^{*}\right)$

Problem 4:

For all parts, we assume that A_{n} is regular with pumping length p, and derive a contradiction.
(a:) Using the pumping lemma on the input $0^{\mathrm{p}} 1^{\mathrm{p}} 2^{\mathrm{p}}$ shows that $0^{\mathrm{p}+\mathrm{n}} 1^{\mathrm{p}} 2^{\mathrm{p}}$ must also be in A_{1} for some $\mathrm{n}>0$.
(b:) Using the pumping lemma on the input $a^{p} b a^{p} b a^{p} b$ shows that $a^{p+n} b a^{p} b a^{p} b$ must also be in A_{2} for some $n>0$.
(c:) Using the pumping lemma on the input $\mathrm{a}^{2^{\wedge} \mathrm{p}}$ shows that $\mathrm{a}^{\left(2^{\wedge} \mathrm{p}\right)+\mathrm{n}}$ must also be in A_{3} for some $\mathrm{p}>\mathrm{n}>0$. But, $2^{\mathrm{p}}<2^{\mathrm{p}}+\mathrm{n}<2^{\mathrm{p}+1}$, so this string cannot be in A_{3}.

Problem 5:

If $A D D$ is regular with pumping length p, we may apply the pumping lemma to $1^{\mathrm{p}}=1^{\mathrm{p}}+0$, showing that $1^{\mathrm{p}+\mathrm{n}}=1^{\mathrm{p}}+0$ is in $A D D$ for some $\mathrm{n}>0$.

Problem 6:

Observe that any binary string beginning and ending with the same digit has an equal number of occurrences of the substrings 01 and 10 . Thus, the following regular expression recognizes $D: \varepsilon \cup 0 \Sigma^{*} 0 \cup 1 \Sigma^{*} 1$.

Problem 7:

Let A be the language given by the regular expression (01$)^{*} 0$. Then, $\mathrm{A}_{1 / 3-1 / 3}=$ $\left\{(01)^{\mathrm{n}} 00(10)^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$. If p is the pumping length of $\mathrm{A}_{1 / 3-1 / 3}$, applying the pumping lemma to $(01)^{\mathrm{p}} 00(10)^{\mathrm{p}}$ yields a string which has a pair of consecutive zeroes past the center of the string, a contradiction.

