Corrected proof of stationarity equation for MCMC

As in class, the non-evidence variables are $\mathbf{X} = \{X_1, \ldots, X_n\}$, and the evidence variables \mathbf{E} are set to **e**. The MCMC algorithm attempts to estimate the conditional distribution of one of the variables, say X_1 , given the evidence **e**, i.e., $\Pr[X_1|\mathbf{e}]$.

We wish to show that the MCMC algorithm takes a random walk whose stationary distribution is given by

$$\pi(\mathbf{x}) = \Pr[\mathbf{X} = \mathbf{x} | \mathbf{e}] = \Pr[\mathbf{x} | \mathbf{e}],$$

meaning that in the long run, the proportion of time steps at which the assignment \mathbf{x} is visited by MCMC is roughly $\pi(\mathbf{x})$. To show this, it suffices to prove the stationarity equation:

$$\pi(\mathbf{x}') = \sum_{\mathbf{x}} \pi(\mathbf{x}) q(\mathbf{x} \to \mathbf{x}')$$

where $q(\mathbf{x} \to \mathbf{x}')$ is the transition probability of moving from state (assignment) \mathbf{x} to \mathbf{x}' . The point of this note is to give a proof of this equation.

We first need to compute this transition probability. This is where I made a mistake in my proof (thanks to Miro for figuring out my bug). If the current assignment is \mathbf{x} and variable X_i is selected, then we change x_i to x'_i with probability

$$\Pr[X_i = x_i' | \mathbf{x}_{-i}, \mathbf{e}]$$

where \mathbf{x}_{-i} is the settings of all the (non-evidence) variables other than X_i . Therefore, in class, I stated that $q(\mathbf{x} \to \mathbf{x}')i$, the transition probability given that variable X_i has been selected, is equal to this probability. However, because no other values of \mathbf{x} are modified, this is true only if the other values in \mathbf{x}' match those in \mathbf{x} ; otherwise, the probability is simply zero since there is no chance of making such a transition. In other words,

$$q(\mathbf{x} \to \mathbf{x}'|i) = \begin{cases} \Pr[x'_i | \mathbf{x}_{-i}, \mathbf{e}] & \text{if } \mathbf{x}_{-i} = \mathbf{x}'_{-i} \\ 0 & \text{else.} \end{cases}$$

Since each variable is selected with equal probability, the overall transition probability is

$$q(\mathbf{x} \to \mathbf{x}') = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{x} \to \mathbf{x}'|i).$$

To prove the stationarity equation, we compute its right hand side:

$$\sum_{\mathbf{x}} \pi(\mathbf{x}) q(\mathbf{x} \to \mathbf{x}') = \sum_{\mathbf{x}} \pi(\mathbf{x}) \cdot \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{x} \to \mathbf{x}'|i)$$

= $\frac{1}{n} \sum_{i=1}^{n} \sum_{\mathbf{x}} \pi(\mathbf{x}) q(\mathbf{x} \to \mathbf{x}'|i)$ by rearranging the sums
= $\frac{1}{n} \sum_{i=1}^{n} \sum_{\mathbf{x}:\mathbf{x}_{-i}=\mathbf{x}'_{-i}} \pi(\mathbf{x}) \Pr[x'_{i}|\mathbf{x}_{-i}, \mathbf{e}]$ plugging in for $q(\mathbf{x} \to \mathbf{x}'|i)$ (which is zero when $\mathbf{x}_{-i} \neq \mathbf{x}'_{-i}$).

As in class, if $\mathbf{x}_{-i} = \mathbf{x}'_{-i}$ then

$$\begin{aligned} \pi(\mathbf{x}) \Pr[x'_i | \mathbf{x}_{-i}, \mathbf{e}] &= \Pr[\mathbf{x}_i | \mathbf{e}] \cdot \Pr[x'_i | \mathbf{x}_{-i}, \mathbf{e}] & \text{plugging in for } \pi(\mathbf{x}) \\ &= \Pr[x_i, \mathbf{x}_{-i} | \mathbf{e}] \cdot \Pr[x'_i | \mathbf{x}_{-i}, \mathbf{e}] & \text{decomposing } \mathbf{x} \text{ into } x_i, \mathbf{x}_{-i} \\ &= \Pr[\mathbf{x}_{-i} | \mathbf{e}] \cdot \Pr[x_i | \mathbf{x}_{-i}, \mathbf{e}] \cdot \Pr[x'_i | \mathbf{x}_{-i}, \mathbf{e}] & \text{definition of conditional probability} \\ &= \Pr[\mathbf{x}_{-i} | \mathbf{e}] \cdot \Pr[x'_i | \mathbf{x}_{-i}, \mathbf{e}] \cdot \Pr[x_i | \mathbf{x}_{-i}, \mathbf{e}] & \text{rearranging factors} \\ &= \Pr[\mathbf{x}'_{-i} | \mathbf{e}] \cdot \Pr[x'_i | \mathbf{x}'_{-i}, \mathbf{e}] \cdot \Pr[x_i | \mathbf{x}_{-i}, \mathbf{e}] & \text{since } \mathbf{x}'_{-i} = \mathbf{x}_{-i} \\ &= \Pr[x'_i, \mathbf{x}'_{-i} | \mathbf{e}] \cdot \Pr[x_i | \mathbf{x}_{-i}, \mathbf{e}] & \text{definition of conditional probability} \\ &= \Pr[\mathbf{x}'_i | \mathbf{e}] \cdot \Pr[x_i | \mathbf{x}_{-i}, \mathbf{e}] & \text{combining } x'_i, \mathbf{x}'_{-i} \text{ into } \mathbf{x}' \\ &= \pi(\mathbf{x}') \Pr[x_i | \mathbf{x}_{-i}, \mathbf{e}]. & \text{by definition of } \pi \end{aligned}$$

So, plugging into the derivation above, we get that the right hand side of the stationarity equation is

$$\begin{split} \sum_{\mathbf{x}} \pi(\mathbf{x}) q(\mathbf{x} \to \mathbf{x}') &= \frac{1}{n} \sum_{i=1}^{n} \sum_{\mathbf{x}: \mathbf{x}_{-i} = \mathbf{x}'_{-i}} \pi(\mathbf{x}') \Pr[x_i | \mathbf{x}_{-i}, \mathbf{e}] \\ &= \pi(\mathbf{x}') \cdot \frac{1}{n} \sum_{i=1}^{n} \sum_{\mathbf{x}: \mathbf{x}_{-i} = \mathbf{x}'_{-i}} \Pr[x_i | \mathbf{x}_{-i}, \mathbf{e}] \quad \text{pulling } \pi(\mathbf{x}') \text{ out of the sum} \\ &= \pi(\mathbf{x}') \cdot \frac{1}{n} \sum_{i=1}^{n} \sum_{\mathbf{x}: \mathbf{x}_{-i} = \mathbf{x}'_{-i}} \Pr[x_i | \mathbf{x}'_{-i}, \mathbf{e}] \quad \text{since } \mathbf{x}_{-i} = \mathbf{x}'_{-i} \text{ inside the sum} \\ &= \pi(\mathbf{x}') \cdot \frac{1}{n} \sum_{i=1}^{n} \sum_{x_i} \Pr[x_i | \mathbf{x}'_{-i}, \mathbf{e}] \quad \text{since only } x_i \text{ is changing in the sum,} \\ &= \pi(\mathbf{x}') \cdot \frac{1}{n} \sum_{i=1}^{n} 1 \quad \text{since the sum of probabilities of all} \\ &= \pi(\mathbf{x}'). \end{split}$$

This was the desired result showing that the stationarity equation holds.