
Corrected proof of stationarity equation for MCMC

As in class, the non-evidence variables are X = {X1, . . . , Xn}, and the evidence variables E are set to
e. The MCMC algorithm attempts to estimate the conditional distribution of one of the variables, say X1,
given the evidence e, i.e., Pr[X1|e].

We wish to show that the MCMC algorithm takes a random walk whose stationary distribution is given
by

π(x) = Pr[X = x|e] = Pr[x|e],

meaning that in the long run, the proportion of time steps at which the assignment x is visited by MCMC
is roughly π(x). To show this, it suffices to prove the stationarity equation:

π(x′) =
∑
x

π(x)q(x→ x′)

where q(x → x′) is the transition probability of moving from state (assignment) x to x′. The point of this
note is to give a proof of this equation.

We first need to compute this transition probability. This is where I made a mistake in my proof (thanks
to Miro for figuring out my bug). If the current assignment is x and variable Xi is selected, then we change
xi to x′i with probability

Pr[Xi = x′i|x−i, e]

where x−i is the settings of all the (non-evidence) variables other than Xi. Therefore, in class, I stated that
q(x → x′)i, the transition probability given that variable Xi has been selected, is equal to this probability.
However, because no other values of x are modified, this is true only if the other values in x′ match those
in x; otherwise, the probability is simply zero since there is no chance of making such a transition. In other
words,

q(x→ x′|i) =
{

Pr[x′i|x−i, e] if x−i = x′−i
0 else.

Since each variable is selected with equal probability, the overall transition probability is

q(x→ x′) =
1
n

n∑
i=1

q(x→ x′|i).

To prove the stationarity equation, we compute its right hand side:

∑
x

π(x)q(x→ x′) =
∑
x

π(x) · 1
n

n∑
i=1

q(x→ x′|i)

=
1
n

n∑
i=1

∑
x

π(x)q(x→ x′|i) by rearranging the sums

=
1
n

n∑
i=1

∑
x:x−i=x′−i

π(x) Pr[x′i|x−i, e]
plugging in for q(x → x′|i) (which is
zero when x−i 6= x′−i).

As in class, if x−i = x′−i then

π(x) Pr[x′i|x−i, e] = Pr[x|e] · Pr[x′i|x−i, e] plugging in for π(x)
= Pr[xi,x−i|e] · Pr[x′i|x−i, e] decomposing x into xi,x−i
= Pr[x−i|e] · Pr[xi|x−i, e] · Pr[x′i|x−i, e] definition of conditional probability
= Pr[x−i|e] · Pr[x′i|x−i, e] · Pr[xi|x−i, e] rearranging factors
= Pr[x′−i|e] · Pr[x′i|x′−i, e] · Pr[xi|x−i, e] since x′−i = x−i
= Pr[x′i,x

′
−i|e] · Pr[xi|x−i, e] definition of conditional probability

= Pr[x′|e] · Pr[xi|x−i, e] combining x′i,x
′
−i into x′

= π(x′) Pr[xi|x−i, e]. by definition of π
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So, plugging into the derivation above, we get that the right hand side of the stationarity equation is

∑
x

π(x)q(x→ x′) =
1
n

n∑
i=1

∑
x:x−i=x′−i

π(x′) Pr[xi|x−i, e]

= π(x′) · 1
n

n∑
i=1

∑
x:x−i=x′−i

Pr[xi|x−i, e] pulling π(x′) out of the sum

= π(x′) · 1
n

n∑
i=1

∑
x:x−i=x′−i

Pr[xi|x′−i, e] since x−i = x′−i inside the sum

= π(x′) · 1
n

n∑
i=1

∑
xi

Pr[xi|x′−i, e]
since only xi is changing in the sum,
and x−i does not appear inside of it

= π(x′) · 1
n

n∑
i=1

1 since the sum of probabilities of all
elements of a distribution is 1

= π(x′).

This was the desired result showing that the stationarity equation holds.

2


